

MHD Simulation of Interplanetary Propagation of **Multiple Coronal Mass Ejections with Internal** Magnetic Flux Rope (SUSANOO-CME)

Daikou Shiota

Institute for Space and Earth Environmental Research (ISEE), Nagoya University, Japan

Collaboration with Ryuho Kataoka (NIPR) This work is accepted to Space Weather on Jan.14 http://onlinelibrary.wiley.com/doi/10.1002/2015SW001308/

e-mail: shiota@stelab.nagoya-u.ac.jp

Science for Space Weather

@Goa, India, 2016.1.28

Outline of This talk

- Introduction
- Solar wind model: SUSANOO-SW
- CME model: SUSANOO-CME
- Discussion
- Summary

Flares and geoeffective CMEs

Flares-CMEs in October-November 2003 (the Halloween events).

Many large solar flares occurred (ex. NOAA 10486)

• EIT and LASCO movies of the flare on Oct. 28, 2003 (Halloween storm)

Important structures of geoeffective CMEs **Flux ropes** (or Magnetic clouds)

Estimation of the arrival of Southward Magnetic field (SBz) especially associated with a magnetic cloud within a CME is an important task in the space weather forecast

Flux ropes within CMEs

Modeling the magnetic field configuration of a flux rope <= whole evolution of the flux rope from its origin

A helical flux rope formed as a result of a solar eruption

(Cremades & Bothmer 2004)

MHD simulation continuous from the solar corona

(Roussev + 2004)

WSA-ENLIL + cone model

- WSA-ENLIL(Odstrcil 2003) + cone model has been often used for space weather forecast operations in NASA and NOAA.
- The cone model incorporates a hydrodynamic pulse (without internal magnetic flux rope) into solar wind MHD simulation and hence is useful for a shock arrival time forecast but not suitable to predict an intense magnetic storm caused by the passage of a magnetic cloud within a CME.

CME model with internal magnetic flux rope

- Kataoka+ (2009) proposed a model to inject a CME that includes an internal magnetic flux rope into 3D solar wind.
- In this study, we modified the model specifying its parameters on the basis of solar observations. (SUSANOO-CME)

Outline of This talk

- Introduction
- Solar wind model: SUSANOO-SW
- CME model: SUSANOO-CME
- Discussion
- Summary

Solar wind MHD model: SUSANOO-SW

- Numerical domain in 25 Rs \leq r \leq 425 Rs (~ 2 au)
- Yinyang Grid (202 × 68 × 192 × 2)
- Inner boundary solar wind map rotating and timedependent
- Planets are revolving

Space-weather-forecast-Usable System Anchored by Numerical Operations and Observations

(Shiota+ 2014, Space Weather)

Heliographic inertial coordinate Solar wind map on the ecliptic plane Colors: velocity on ecliptic plane White surface: neutral sheet

Coronal magnetic field and solar wind velocity

Time-varying inner boundary condition

• A time series of photospheric magnetic field maps (one map per day)

⇒ A time series of solar wind maps for the inner boundary condition of MHD simulation

Solar wind in 2013~2014

SUSANOO Space-weather-forecast-Usable System Anchored by Numerical Operations and Observations blue: Earth, green: Jupiter, red: Mars, orange: Venus, light blue: Mercury

Solar wind in 2007 at Earth position

Solar wind at Mars position

Solar wind speed
 <=Mars Express
 (MEX) plasma

in situ measurement MHD simulation

Automated forecast system (SUSANOO)

http://st4a.stelab.nagoya-u.ac.jp/susanoo/index.html

Space-weather-forecast-Usable System Anchored by Numerical Operations and Observations

The acronym "SUSANOO" is the name of a God of storms in Japanese myth.

Outline of This talk

- Introduction
- Solar wind model: SUSANOO-SW
- CME model: SUSANOO-CME
- Discussion
- Summary

MHD model: SUSANOO-CME

Background: SUSANOO-SW Purpose

Multiple CMEs with internal flux rope

To establish MHD simulation capable of predicting southward IMF that arrive to the Earth associated with geoeffective CMEs

Method

- MHD simulation is driven on the basis of the **solar observational data** obtained in near real-time (daily synoptic maps, solar flares, CMEs).
- For each CME, **an imaginary space** a flux rope is fixed in space and it is **projected onto the real space** with a function of time as a self-similar evolution (Low 1982, Gibson & Low 1998).
- Numerical domain in 30 Rs \leq r \leq 430 Rs (~ 2 au)

Flux rope model

A pancake shape of a CME (Riley & Crooker 2004, Savani et al. 2011)

This model has 10 parameters

- 6 parameters specify the structure of each CME
- 4 parameters specify the relationship between the imaginary space and real space for each CME.

(Shiota & Kataoka 2016, Space Weather, in press)

Parameters of the CME model

Table 1. List of Parameters

Symbols	Explanation	Default Value		
t _{onset}	Onset time of CME	from LASCO CME catalog		
V _{CME}	Propagation speed of CME	from LASCO CME catalog	L	
λς	Heliographic latitude of CME source region	from the flare list in NGDC		observation
ϕ_{S}	Heliographic longtude of CME source region	from the flare list in NGDC	J	
τ	Tilt angle of spheromak	±90° with Hale-Nicholson law	l	accumo
χ	Inclination angle of spheromak	0°		assume
<i>c</i> ₁	Chirality of helicity in spheromak	1, set –1 if opposite to Bothmer-Schwenn rule		observation
Φ_{mag}	Magnetic flux within CME	proportion to flare class	٦	
WA	Angular width of CME	60°	F	assume
w _r	Radial width of CME	2 <i>R</i> _s	J	

Flux rope model

A pancake shape of a CME (Riley & Crooker 2004, Savani et al. 2011)

This model has 10 parameters

- 6 parameters specify the structure of each CME
- 4 parameters specify the relationship between the imaginary space and real space for each CME.

(Shiota & Kataoka 2016, Space Weather, in press)

Technique to inject CMEs on the inner boundary condition

• A time series of photospheric magnetic field maps (one map per day)

 ⇒ A time series of solar wind maps for the inner boundary condition of MHD simulation Information of CMEs are superposed on these
 boundary conditions

Vr [Lm /a] Vr [Lm /a]

flares-CMEs in October-November 2003 (the Halloween events).

• Many large solar flares occurred (ex. NOAA 10486)

• EIT and LASCO movies of the flare on Oct. 28, 2003 (Halloween storm)

Numerical simulation of 2003 Oct-Nov

#		$t_{\sf onse}$	et	V_{CME}	$\lambda_{ m S}$	$\phi_{ m S}$	τ	χ	<i>C</i> ₁	$arPsi_{ ext{mag}}$	$W_{\rm A}$	$W_{\rm r}$	NOAA #	flare
1	Oct	21	3:54	1500	3	-115	0	90	1	3.0E+20	60	2	back	—
2	Oct	22	3:54	1160	3	-102	0	-90	-1	3.0E+20	60	2	10486	M3.7
3	Oct	22	20:06	1080	3	-95	0	-90	-1	1.0E+21	60	2	10486	M9.9
4	Oct	23	8:54	1400	3	-88	0	-90	-1	1.0E+21	60	2	10486	X5.4
5	Oct	23	20:06	1130	-17	-84	0	-90	-1	1.0E+21	60	2	10486	X1.1
6	Oct	24	2:54	1050	-19	-72	0	-90	-1	3.0E+20	60	2	10486	M7.6
7	Oct	24	5:30	1230	-24	-74	0	-90	-1	3.0E+20	30	2	10486	M4.2
8	Oct	26	6:54	1370	-15	-44	0	-90	-1	1.0E+21	60	2	10486	X1.2
9	Oct	26	17:54	1540	1	38	0	90	1	2.0E+21	60	2	10484	X1.2
10	Oct	27	8:30	1050	0	45	0	90	1	3.0E+20	60	2	10484	M2.7
11	Oct	28	11:30	2460	-16	-13	0	-90	-1	6.0E+21	60	2	10486	X17.2
12	Oct	29	20:54	2030	-16	2	0	-90	-1	3.0E+21	60	2	10486	X10.0
13	Oct	31	4:42	2136	8	30	0	90	1	3.0E+20	30	2	quiet	M2.0
14	Nov	2	9:30	2040	-16	135	0	90	1	1.0E+21	60	2	back	_
15	Nov	2	17:30	2600	-14	56	0	-90	-1	2.0E+21	60	2	10486	X8.3
16	Nov	3	1:59	840	10	77	0	90	1	1.0E+21	30	2	10488	X2.7
17	Nov	3	10:06	1400	8	77	0	90	1	1.0E+21	60	2	10488	X3.4
18	Nov	4	12:06	1210	5	-150	0	90	1	1.0E+21	60	2	back	—
19	Nov	4	19:54	2660	-19	83	0	-90	-1	4.0E+21	60	2	10486	X28.0
20	Nov	6	17:30	1500	10	-150	0	90	1	1.0E+21	60	2	back	_
21	Nov	7	15:54	2270	10	150	0	90	1	2.0E+21	60	2	back	_
22	Nov	9	12:30	2080	-10	-110	0	-90	-1	2.0E+21	60	2	back	_

Numerical results

Time evolution of Velocity and Bz (GSE) on the ecliptic plane

Synthetic solar wind measurement at Earth position

MHD OMNI ACE (Skoug+ 2004)

- Solar wind profile at the Earth position is compared with in situ measurements.
- The results reproduce well the profiles of solar wind speed and B_z strength following shock 2.

Propagation and CME-CME interaction

CME8+CN

29

(b) Mag. field GSE Z [nT]

(c) 1500 Solar wind 1000 speed [km s⁻¹] 500

2000

MC11

31

CME-CME Interaction

Outline of This talk

- Introduction
- Solar wind model: SUSANOO-SW
- CME model: SUSANOO-CME
- Discussion
- Summary

Discussion

- Our new MHD model SUSANOO-CME reproduces reasonably good profiles of solar wind speed and IMF. The results provide many insights into the dynamics of the magnetic field structure during CME propagation.
- The CME model has many **free parameters**.
- The uncertain parameters are specified with some assumptions based on the observation in this study. However, the rule to specify the best set of all the parameters is still open.

Parameters of the CME model

Table 1. List of Parameters

Symbols	Explanation	Default Value		
t _{onset}	Onset time of CME	from LASCO CME catalog		
V _{CME}	Propagation speed of CME	from LASCO CME catalog	L	
λς	Heliographic latitude of CME source region	from the flare list in NGDC		observation
ϕ_{S}	Heliographic longtude of CME source region	from the flare list in NGDC		
τ	Tilt angle of spheromak	±90° with Hale-Nicholson law	l	accumo
χ	Inclination angle of spheromak	0°		assume
<i>c</i> ₁	Chirality of helicity in spheromak	1, set –1 if opposite to Bothmer-Schwenn rule		observation
Φ_{mag}	Magnetic flux within CME	proportion to flare class	٦	
WA	Angular width of CME	60°	F	assume
w _r	Radial width of CME	2 <i>R</i> _s	J	

Discussion (cont.)

- SUSANOO-CME omits to solve the region of solar corona (1Rs \leq r \leq 30Rs).
- The results of the dynamics in the coronal region should be taken into account to the parameters of each CME injected by SUSANOO-CME.
 - Deflection (Gopalswamy + 2009)
 - Rotation (Yurchyshyn + 2008, Shiota + 2010)
 - Interchange reconnection (deformation)
- Density and temperature is also the important parameters that are not included in this study.

Lager magnetic flux case

- MHD MHD(original parameter) OMNI ACE (Skoug+ 2004)
- Magnetic flux 6×10²¹Mx(green)
- \rightarrow 7×10²¹Mx(red)
- Shock arrived earlier
- The following shock became faster

Western source case

- MHD MHD(original parameter) OMNI ACE (Skoug+ 2004)
- Source longitude -13 (green) $\rightarrow -8$ (red)
- The core part of the flux rope did not pass through the Earth position. 2003.10.30 00:00UT Bz [nT]

0.5

-0.5

-1 C

-0.5

0.0

0.5 X [AU]

Y [AU] 0.0

Summary

- We introduced our newly developed CME model (SUSANOO-CME) that injects multiple CMEs with internal magnetic flux ropes into a heliosphere MHD simulation.
- We presented the numerical results of the modeling of the 2003
 Halloween storms as a demonstration of the performance of the CME model. The MHD model provides reasonably good results for velocity and the Southward Bz profiles at the Earth of the Event on October 29.
- With further parameter optimizations, SUSANOO-CME simulation is capable of predicting i.e., the magnitude of geomagnetic storms as well as predicting shock arrival times. The new simulation therefore provides a significant progress in the field of space weather forecast.
- The numerical results also provide many insights into the dynamics of the magnetic field structures during CME propagation.

Helicity of Magnetic clouds (MCs)

		MC Type Magnetic helicity Number of MCs during 1974–1981	Variation of magnetic field vector	Direction of magnetic field on flux tube axis	Rotation of magnetic field vector in <i>Bz-B</i> y-plane (<i>Bx</i> [*] - <i>By</i> [*] -plane)
2	North	SEN Left-handed	South ($-Bz$) \rightarrow north ($+Bz$)	East (+By)	
2n cycle	South	SWN Right-handed	South ($-Bz$) \rightarrow north ($+Bz$)	West (-By)	
	South	NES Right-handed	North (+Bz)→south (-Bz)	East (+ <i>B</i> y)	
2n+1 cycle	North	NWS Left-handed	North (+Bz)→south (-Bz)	West (-By)	
		Orientations for high inclinations to the ecliptic SEN, NWS, SWN, NES	East $(+By) \rightarrow west (-By)$ West $(-By) \rightarrow east(+By)$	North $(+Bz)$ \rightarrow south $(-Bz)$ South $(-Bz)$ \rightarrow north $(+Bz)$	Rotations in $By-Bz-(By^{+}-Bx^{+})$ plane

(Bothmer & Schwenn 1998)