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Introduction
The solar corona spews out vast amounts of magnetized plasma
into the heliosphere which has a direct impact on the Earth’s
magnetosphere. Thus it is important that we develop an under-
standing of the dynamics of the solar corona. Currently it is
not possible to observe the 3D magnetic field structure of the
solar corona; this warrants the use of numerical simulations to
study the coronal magnetic field. Full MHD simulations of the
global coronal field, apart from being computationally very ex-
pensive would be physically less transparent, owing to the large
number of free parameters that are typically used in such codes,
which brings us to the Magneto-frictional model which is rela-
tively simpler and computationally more economic.

The Magnetofrictional Model
The Magnetofrictional method uses the fact that magnetic pres-
sure in the corona is greater than the gas pressure. Owing to this
low plasma beta the only driving force in the corona is assumed
to be the Lorentz force (J×B). The induction equation is solved
in the vector potential (A),

∂A
∂t

= v× B− ηcj, (1)

v =
1

ν

J× B
B2

+ v0e
(2.5R�−r)/rwr̂ (2)

The second term in equation (3) models the solar wind, which
opens up the magnetic field lines as they reach the Source Sur-
face

Numerical method
Our computational domain is a 101× 161× 360 grid. Grid spec-
ifications are as follows, 1R� < r < 2.5R� , 10o ≤ θ ≤ 170o,
0 ≤ φ ≤ 360o, 4r = 0.015R�, 4θ = 4φ = 1o. We solve the
equations in spherical polar co-ordinates. The variables have
been defined on a staggered grid, to prevent spatial odd-even de-
coupling of grids in the second derivative. A and J have been
defined on the cell ribs, B on the cell faces and v on the cell
vertices. For example,

Aθ −→ Ar,θ+
1
2,φ

Bθ −→ Br+
1
2,θ,φ+

1
2

vθ −→ vr,θ,φ

To find J and B on the cell vertices before calculating v, linear
interpolations have been used. A Van Leer Slope Limiter has
been used to interpolate B onto the cell ribs, before calculating
v × B . A second order accurate central difference scheme has
been used to calculate ∇ × A and ∇ × B . Integration in time
has been done by a first order accurate Euler method.

Simulation results

Figure 1: Evolution of field lines projected on the r-phi plane at theta = 1800

Figure 2: Evolution of field lines projected on the theta-phi plane at r=1.015
R�

Discussion
The main purpose of this trial run was to test the validity of the
code.
The bipoles, which initially have a lot of concentrated current,
expand and relax towards a force-free equilibrium. This is evi-
dent from figures 1 and 2. As field lines of the adjacent bipoles
expand, opposing field lines come close to each other and small
zones of high current are formed. The field lines reconnect to
get rid of the excess current and cross connections between the
adjacent bipoles are formed over the external Polarity Inversion
Line. This is more evident from Figure 2 which plots the field
lines at r=1.015 R�.
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Figure 3: Integral of kinetic energy, magnetic energy and J2 over the entire
computational volume versus time.

Quadrupolar Arrangement of spots

Figure 4: The theta-phi plane at r=1.015 R� and the r-theta planes at two
different longitudes at T=4000 (code unit).

Figure 5: The theta-phi plane at r=1.015 R� and the r-theta planes at two
different longitudes at T = 40000 (code unit).

Figure 6: Plot of the flux threading the theta-phi plane at r = 1.45 R�.

A uniform velocity has been applied in the phi direction. This
has been done to test the periodic boundary condition. In the ab-
sence of any shearing photospheric motion, the field lines relax

to a force free state - cross connections and open field lines are
formed, thereby increasing the open flux at r=1.45 R�.

Surface Flux Transport Model

We further develop a Surface Transport Flux model in the Vec-
tor potential which can be used to drive the coronal model for
simulating long time periods.

Figure 7: Evolution of the photospheric magnetic field in response to differ-
ential rotation and meridional flow.

Twisting Photospheric Motion
We apply a twisting photospheric velocity on one of the bipolar
regions.

The field lines are twisted in response to the applied photo-
spheric motion and we see sigmoidal structures forming above
the internal Polarity Inversion Line.

Future Work
We plan to use this model for full solar cycle, data driven simu-
lations of the corona.
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