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Neural Network Basics

= Given several inputs:
and several weights:
and a bias value: T1, T2, g, ...

Wy, Wa, Wy, ...

= A neuron produces a single output: 0 € R
01 = s()_, wx; +b)
Zf_ wixr; + b
= This sum is called the activation of the neuron

= The function s is called the activation function for
the neuron

» The weights and bias values are typically initialized
randomly and learned during training

output




McCulloch—Pitts “unit”

Output is a““squashed” linear function of the inputs:

a; — g(in;) = g (2;W;a;)

Bias Weight

2=-1 w a;=g(in;)
. g
m In;
— 2 f b
/

Input Input Activation Output
Links Function  Function Output Links

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do



Activation functions

, 9(in)
f
(b)

(a)is astep function or threshold function
(b)is asigmoid function 1/(1 +e™)

Changing the bias weight W, ; moves the threshold location



Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

YWiz; >0 or W-x>0

X X1
1 @ 1 O
?
0 0
0 1 X 0 1 %
(a) x; and x, (b) x; or x, (€) x; xor X,

Minsky & Papert (1969) pricked the neural network balloon



Feed forward example

W

24

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Wss-asz+ Wiz - aq)
= gWss5-g(Wis-a1+Was-as)+Wys-g(Wis-a1+Woy-ay))

Adjusting weights changes the function: do learning this way!



Feed Forward Neural Networks

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

OQutput units a;
7,

Hidden units a;
Wij

Input units aj




Hidden-Layer

e The hidden layer (L,, L;) represent learned non-linear
combination of input data

e For solving the XOR problem, we need a hidden layer

— some neurons in the hidden layer will activate only for some combination of
input features

— the output layer can represent combination of the activations of the hidden
neurons

 Neural network with one hidden layer is a universal
approximator

— Every function can be modeled as a shallow feed forward network

— Not all functions can be represented efficiently with a single hidden layer
= we still need deep neural networks



Going from Shallow to Deep Neural Networks

 Neural Networks can have several hidden layers

e |nitializing the weights randomly and training all
layers at once does hardly work

* Instead we train layerwise on unannotated data
(a.k.a. pre-training):
— Train the first hidden layer

— Fix the parameters for the first layer and train the
second layer. —

— Fix the parameters for the first & second layer, train the
third layer

« After the pre-training, train all layers using your annotated data

* The pre-training on your unannotated data creates a high-level
abstractions of the input data

« The final training with annotated data fine tunes all parameters in the
network



How to learn the weights

Initialise the weights i.e. W, ;W,; with random values
With input entries we calculate the predicted output
We compare the prediction with the true output

The error is calculated

The error needs to be sent as feedback for updating the weights

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Output units a;

Hidden units a.

Input units ay



BACKPROPAGATION



How to Train a Neural Net?

Input

(Feature Vector)

v \
) Eg W
/M

Output
(Label)

Put in Training inputs, get the output

Compare output to correct answers: Look at loss function J
Adjust and repeat!

Backpropagation tells us how to make a single adjustment
using calculus.


Presenter
Presentation Notes
Last time we saw how a NN computes the output given an input, in 1 single forward pass.
Where does the training occur then?
We compare the output to the known truth, and calculate our loss J
According to our loss function, we adjust weights, and repeat.
The adjustment is basically gradient descent, however computing that for all the weights is difficult.
It involves a technique called “backpropagation”.



How have we trained before?

Gradient Descent!

Make prediction

Calculate Loss

Calculate gradient of the loss function w.r.t. parameters
Update parameters by taking a step in the opposite direction
lterate

ko


Presenter
Presentation Notes
Let’s focus on these steps and let’s see it visually.


Feedforward Neural Network

e

A
A AN 4V
%/’?& 2

i



Presenter
Presentation Notes
Let’s see this visually again:


Forward Propagation

e

Pass in
Input
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Presenter
Presentation Notes
Inputs are passed in.
Inputs are constant, they are rows of our training data.


Forward Propagation
Calculate each Layer
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Presenter
Presentation Notes
Perform the matrix multiplications and activation functions in order to calculate each layer.


Forward Propagation
Get Output
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Presenter
Presentation Notes
And then get our predictions.


Forward Propagation

4
i i QW
44

i3

Evaluate:
](yi; 5}\1)

A



Presenter
Presentation Notes
Compare the predictions to the known ground truths.
Specifically, calculate the loss function.


How have we trained before?

Gradient Descent!

Make prediction

Calculate Loss

Calculate gradient of the loss function w.r.t. parameters
Update parameters by taking a step in the opposite direction
lterate

bk owbdPE


Presenter
Presentation Notes
Let’s now see how step 3 works.


How to Train a Neural Net?

 How could we change the weights to make our Loss
Function lower?

e Think of neural net as a function F: X ->Y
 Fis a complex computation involving many weights W_k

 Given the structure, the weights “define” the function F (and
therefore define our model)

 Loss Function is J(y,F(x))


Presenter
Presentation Notes
The goal is to change the weights to make the loss function lower.
Thinking of the NN as a function, the loss function is a function of J(y, F(X))


How to Train a Neural Net?

. Geta% for every weight in the network.
k

e This tells us what direction to adjust each W, if we want to
lower our loss function.

« Make an adjustment and repeat!


Presenter
Presentation Notes
With this setting, from an abstract mathematical standpoint, there is no difference between this and classical ML gradient descent.
It’s just that the function involved is much more complicated, and computation of gradients is mathematically and computationally more challenging.


Feedforward Neural Network
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Presenter
Presentation Notes
So we want to be able to compute the partial derivative of the loss function w.r. to the weights Wk


.

Backpropagation

e Use calculus, chain rule.
e Functions are chosen to have derivatives
e Numerical issues to be considered

dJ N
@ = =y -a®

o] . @) . (3. (2
= G- WO ) o
dJ

= -9 W® . o'(z®) - Ww® . o' (2@) - x


Presenter
Presentation Notes
In this example network we’ve been seeing, equations work out to be these:

Early layers reuse computation from later layers. --> BACK propagation.
	You see how the gradient of W1 uses the gradient of W2 (point in the formula)

Early layers have more terms -> smaller numbers -> vanishing gradient


Backpropagation
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Presenter
Presentation Notes
So visually, the flow is this.


Backpropagation
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Presenter
Presentation Notes
We first compute this, math turns out to be simpler for the last layer.


Backpropagation
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Presenter
Presentation Notes
Using that value, we compute the partial derivative for the previous layer. Back propagation!


Backpropagation
P 5(3’95’}) o/ ¥ a](y;, 7))
oW,

‘ v oW,

@
-



Presenter
Presentation Notes
We go all the way back like that.


How have we trained before?

Gradient Descent!

Make prediction

Calculate Loss

Calculate gradient of the loss function w.r.t. parameters
Update parameters by taking a step in the opposite direction
lterate

abhowbdeE


Presenter
Presentation Notes
Step 4, once we have the gradient, we just take a step in the opposite direction.
Specifically; w = w – learning_rate * gradient
This part is the same as in ML.


Training with backpropagation

Derivative of weight Wi;: J
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Derivative continued ...
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signal signal

where f'(z) = f(z)(1 — f(z)) for logistic f



From single weight Wj; to full W:

ds
= 0;X;
aWU i
e We want all combinationsofi=1,2,...andj=1,2,3,...
@ Solution: Outer product
oJ 5T

oW



Computational Graph

Definition: a data structure for storing gradients of variables used
in computations.

e Node v represents variable
o Stores value
o Gradient
o The function that created the node

e Directed edge (u,v) represents the partial derivative of u w.r.t. v

e To compute the gradient dL/dv, find the unique path from L to v
and multiply the edge weights.



Backpropagation for neural nets

X o(x) o'(x)

5| 0.01] 0.01

-4/ 0.02| 0.02

3| 0.05| 0.05

2| 012 0.10

-1/ 0.27| 0.20

0 0.50 0.25

1 073 0.20

2| 0.88 0.10

‘ 3| 095 0.05
L(y: lf:’) — ||y - !:’Hﬁ 4 098 002
5| 099 o0.01

Given softmax activation, L2 loss, a point (x1, x2, x3, y) = (0. 1, 0.15,

0.2, 1), compute the ¢ L ient
'(.-)'”:'I



Backpropagation for neural nets: forward pass

S1 =x1 -w1 + xo-wo -+ xy-wy

=0.1-14+0.15%240.2%3




Backpropagation for neural nets: backward pass

ow, 0y O0s; Ouw

=2||g —yll x o' (s1) x 11

=2.(o(1)—1) xo'(1) x 0.1

ry-wy 4+ xo - woe 4 sy - wsy f— —0[}106

01-14015%x240.2x3

=1


Presenter
Presentation Notes
Second but last line on the right should say .1
Last line should say .0108


Computation Graphs




CONVOLUTIONAL NEURAL
NETWORKS



Motivation — Image Data

e So far, the structure of our neural network treats all inputs
Interchangeably.

* No relationships between the individual inputs

e Just an ordered set of variables

« We want to incorporate domain knowledge into the
architecture of a Neural Network.


Presenter
Presentation Notes
Images though, have intrinsic properties which could and should be taken advantage of, in the models.


Motivation

Image data has important structures, such as;

 "Topology” of pixels

e Translation invariance

e Issues of lighting and contrast

« Knowledge of human visual system

 Nearby pixels tend to have similar values

« Edges and shapes

e Scale Invariance — objects may appear at different sizes in
the image.


Presenter
Presentation Notes
The variables (i.e. pixels) have a natural “topology” (spatial component) that is meaningful.  This makes images different from say, loan default prediction where the variables do not have a natural topology.
CNNs are based on what we know about the structure of images and also what we know about the human visual system.  The human visual system has “receptive fields” which respond to horizontal bars, vertical bars, etc.



Motivation — Image Data

 Fully connected would require a vast number of parameters

« MNIST images are small (32 x 32 pixels) and in grayscale

 Color images are more typically at least (200 x 200) pixels x
3 color channels (RGB) = 120,000 values.

* Asingle fully connected layer would require (200x200x3)? =
14,400,000,000 weights!

« Variance (in terms of bias-variance) would be too high

 So we Iintroduce “bias” by structuring the network to look for
certain kinds of patterns


Presenter
Presentation Notes
From a dimensionality standpoint, taking advantage of these structures mean much fewer parameters!

We still have a TON of parameters, but better than tons of tons of parameters.

Idea: expect to see the same basic features anywhere in the image.  So don’t learn different things for each location in the image (at least in the early layers)


Motivation

 Features need to be “built up”
 Edges -> shapes -> relations between shapes
e Textures

 (Cat =two eyes In certain relation to one another + cat fur
texture.

 Eyes = dark circle (pupil) inside another circle.

e Circle = particular combination of edge detectors.

 Fur = edges in certain pattern.


Presenter
Presentation Notes
We don’t input these “features”, network learns them.
What we do is simplify network’s job by not inputting all the pixels as inputs to fully connected layers
Instead, we input a ”convoluted” version of that.


Kernels

 Akernelis a grid of weights “overlaid” on image, centered on
one pixel
e Each weight multiplied with pixel underneath it
« Output over the centered pixel is 22’;:1 W, - pixel,
« Used for traditional image processing techniques:
o Blur
O Sharpen
o0 Edge detection
o Emboss


Presenter
Presentation Notes
The way we capture these structures is by making use of “kernels”



Kernel: 3x3 Example

Input Kernel Output
31 2|1 -1 0| 1
1| 2 3 -2 | 0| 2

1] 1|1 -1 0| 1



Presenter
Presentation Notes
Input, kernel


Kernel: 3x3 Example

Output



Presenter
Presentation Notes
Overlay, and again, it’s a dot product.


Kernel: 3x3 Example

Input Kernel Output
31 2|1 -1 0| 1
1 2 3 -2 | © 2 2
1| 1 1 -1 0| 1

=B -1D+@2-00+(1-1)
+(1--2)+(2-0)+(3-2)
+(1- -1+ 1-0)+(1-1)

= 34+1-24+6-1+1=2


Presenter
Presentation Notes
So the output is just the dot product of entries, and the output in this example is 2.

We captured the essence of those 9 pixels.


Kernel: Example

Unweighted 3x3 Weighted 3x3 smoothing
smoothing kernel kernel with Gaussian blur

Kernel to make Intensified sharper
image sharper image

Gaussian Blur Sharpened image


Presenter
Presentation Notes
Input, kernel


Kernels as Feature Detectors

Can think of kernels as a "local feature detectors”

Vertical Line Detector Horizontal Line Detector Corner Detector

-1 (1 ]-1 -1(-1|-1 -1(-1]-1

-1 1| -1 1 1)1 -1 1|1

-1 1| -1 -1 -1 -1 -1 1|1




Convolutional Neural Nets

Primary ldeas behind Convolutional Neural Networks:

e Let the Neural Network learn which kernels are most useful
« Use same set of kernels across entire image (translation

Invariance)
 Reduces number of parameters and “variance” (from bias-

variance point of view)


Presenter
Presentation Notes
This is key.  We learn many different kernels, but they all “operate” across the entire image.

CNN will learn the best kernels that pertain to your training dataset, your problem.


Convolutions



Presenter
Presentation Notes
Convolution is the application of a kernel to the image (RGB)


Convolution Settings — Grid Size

Grid Size (Height and Width):

 The number of pixels a kernel “sees” at once

* Typically use odd numbers so that there is a “center” pixel
« Kernel does not need to be square

Height: 3, Width: 3 Height: 1, Width: 3 Height: 3, Width: 1



Presenter
Presentation Notes
We can specify how we want to apply the kernel. This changes the output dimensions, among other things.



Convolution Settings - Padding

Padding

» Using Kernels directly, there will be an “edge effect”

* Pixels near the edge will not be used as “center pixels” since
there are not enough surrounding pixels

« Padding adds extra pixels around the frame

« So every pixel of the original image will be a center pixel as
the kernel moves across the image

« Added pixels are typically of value zero (zero-padding)


Presenter
Presentation Notes
This is for the edge pixels for which kernel can’t fit the image, if we want that pixel at the center..


Without Padding

1 2 0 3 1

1 0 0 2 2 -1 1 2 -2

2 1 2 1 1 1 1 0

0 0 1 0 0 -1 ] -2 0

1 2 1 1 1 kernel output

input


Presenter
Presentation Notes
We calculate the upper left entry of the output  by multiplying the kernel against the upper left 3x3 patch of the input (and summing).


With Padding

input

-1 1

1 1

-1 -2
kernel

output



Presenter
Presentation Notes
Get the student familiar with the relation between the input size, kernel, and output size.
If there is no padding, the output will be smaller than the input since we ”lose” a little at the boundary.


Convolution Settings

Stride

 The "step size” as the kernel moves across the image

« Can be different for vertical and horizontal steps (but usually
IS the same value)

 When stride is greater than 1, it scales down the output
dimension


Presenter
Presentation Notes
Smaller stride = higher “resolution” of output image


Stride 2 Example — No Padding

=
1 2 0
1 0 0
2 1 2
0 0 1
1 2 1

input

-1 1

1 1

-1 -2
kernel



Stride 2 Example — With Padding

0 3 1
o2 2|0 -1 1| 2 11 2
2 1 2 1 1 0 1 1 0
3
0 0 1 0 0 0 -1 -2 0
1211 1]1]o0 kernel
output

input


Presenter
Presentation Notes
We can have strides and padding at the same time too.

Notice how the output size depends on these parameters.


Convolutional Settings - Depth

In iImages, we often have multiple numbers associated with
each pixel location.

These numbers are referred to as “channels”

o RGB image — 3 channels

o0 CMYK -4 channels

The number of channels is referred to as the “depth”

So the kernel itself will have a “depth” the same size as the
number of input channels

Example: a 5x5 kernel on an RGB image

o There will be 5x5x3 = 75 weights


Presenter
Presentation Notes
Important to emphasize that the kernel will look at the entire depth of the input.
On first layer, the depth will be just RGB or CMYK, but for later layers the input depth may be quite high, so the kernels will have a lot of weights.
They will see this when we walk through some architectures in later lectures.


Convolutional Settings - Depth

 The output from the layer will also have a depth

 The networks typically train many different kernels

e Each kernel outputs a single number at each pixel location

« So if there are 10 kernels in a layer, the output of that layer
will have depth 10.



Pooling

* |dea: Reduce the image size by mapping a patch of pixels to
a single value.

« Shrinks the dimensions of the image.

 Does not have parameters, though there are different types of
pooling operations.


Presenter
Presentation Notes
Move on to pooling.
Can emphasize that there are no weights to be learned here.  It is just a prescribed operation.


Pooling: Max-pool

* [For each distinct patch, represent it by the maximum
o 2x2 maxpool shown below

2 |10 (-1
-3 |1 8| 2|5 8 | 5
>
1 |-1 3 4 maxpoo] 1 4




Pooling: Average-pool

* [For each distinct patch, represent it by the average
« 2x2 avgpool shown below.

2 11|01
-3 |1 8| 2 |5 2 |[1.5
>
1 _1 3 4 avgpoo] 0.25]| 1.5
O| 1] 1]-2
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RELU

4

ConvNet: CONV

and FC Layers

RELU RELU

RELU RELU
CONV

RELU RELU
CONV

CONV

CONV
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o
o

l

CONV




Convolution Layer

- Filters always extend the full
32x32x3 Image depth of the input volume

/ 55x3 filter

30 height
7
I' Convolve the filter with the image
.e. “slide over the image spatially,
" width computing dot products

3 depth



consider a second,

Convolution Layer o=

__— 32x32x3 image
oxdx3 filter

V

AN
[/

>0

"1
e convolve (slide) over all
spatial locations

32

activation maps

4

/A

208



Convolution Layer

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

/

/

3

32

Convolution Layer

activation maps

V2

£

We stack these up to get a “new image” of size 28x28x6!

28



ReLU (Rectified Linear Units)Layer

e Thisis a layer of neurons that
applies the activation function

f(x)=max(0,x). o

e [tincreases the nonlinear properties ' — Rl
of the decision function and of the
overall network without affecting
the receptive fields of the
convolutionlayer.

@(x)

e Other functions are also used to
increase nonlinearity, for example 1
the hyperbolic tangent
f(x)=tanh(x), and the sigmoid e —
function. o '

e Thisis also known as aramp
function.



A BasicConvNet

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

/

/.

o |

32

CONV,
RelLU
e.0.6
5x5x3
filters

y

V.

28

CONV,
RelLU
e.g. 10
5X5x6
filters

24

CONV,
RelLU



What is convolution of an
image with a filter

111014060
O(1{1|1|0 4(3|4
BN 0.1 1.8 214|3
e 0, 1.1 [ 2.3
o[1]1]a]o0
Convolved
Image

Feature



Details about the
convolutionlayer

/

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.



Details about the
convolutionlayer

Output size:
(N - F) / stride + 1

eg.N=7 F=3

stride 1=> (7-3)/1 + 1

stride 2=> (7 -3)/2 +

(
stride 3=> (7-3)/3 +°




Details about the

convolutionlayer
n practice: Common to zero pad the border

010

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 =>zero pad with 1

F =5=>zero pad with 2

F=7=>zero pad with 3



Convolution layer
examples

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

(32+2*2-5)/1+1 = 32 spatially, so
32x32x10



PO O I | N g La ye I Single depth slice

A

. 111124

makes the representations smaller and more manageable X max pool with 2x2 fiters
operates over each activation map independently: 516 |78 andstide?
204x224x64 3191110 ]
112x112x64
o 11234
y

> 112
224 downsampling !
112

224

+ Invariance to image transformation and
increases compactness to representation.

v Pooling types: Max, Average, L2 etc.




Convolutional Neural Networks
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Convolutional Neural Networks

él—\
A=

3
[y

Kernel=

o

o

O [
Q =

o~

&

(S IS N

=

u
olo|o
=|O
o|lr|kr|RL|O
Oo|lO|Rr|O|O

Convolved
wait P, " o
for =
for T — ] i \; \
video (e i
and — =l
do e
reﬂt _.. ............... e T T -_
L3 SN E_E e o
| l | | | | | |
S R——— Convolution Layer Max Pooling Fully Connected

merged user reviews



Applications

| ocalization and Detection

Results from Faster R-CNN, Ren et al 2015



Applications

Computer Vision Tasks

Classification Object Detection Instance

Classification

+ Localization

Segmentation

‘:ﬁ:'. ..-_;' oy ‘ '_J
e P

CAT, DOG, DUCK CAT, DOG, DUCK

I\ J
Y

Single object Multiple objects




CNN ARCHITECTURES



ImageNet Challenge

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Image Classification
Classes — 1000
Train images - 1,281,167

(732-1300) 192 layers

Val images - 50,000 (50) ‘\\

Test images - 100,000 22 layers [ 19|avers |

(100) \ 67 I

3 57 I_ I 8 layers 8 layers ] shallow

ILSVRC'15  ILSVRC'14  [ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet


https://en.wikipedia.org/wiki/ImageNet#ImageNet_Challenge

AlexNet (2012)

[Krizhevsky et al. 2012]

e, ;;;;;;;§%1¢;:_ P . t-:::: ¥ *
"--l.-'-':' ¥ :___'_ = 3 -.Qﬂ._:ﬂ-
-.f:liﬁfr L) 187 138 2048 708
1728 e - T
-ut o PN
4 o 13-"-,. \ 13
d -""fr T N
o} = o -
m T3 ) dense |
27 ?'-, 1 13 Ense
3 .
192 192 128 Max | |
M-a xX 128 Ha}; pﬂﬂling Im JU‘JB
poaling pooling
Architecture:

CONV1 -> MAX POOL1 -> NORM1 -> CONV2 -> MAX POOL2 -> NORM2 ->

CONV3 -> CONV4 -> CONVS5 -> Max -> POOL3 -> FC6 -> FC7 -> FC8

dense



AlexNet (2012)

[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad O Other details:
[27x27x96] MIAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

- first use of RelLU
- used Norm layers
(not common

[13x13x256] MAX POOL2: 3x3 filters at stride 2 anymore) - heavy
[13x13x256] NORIM2: Normalization layer data augmentation
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 - dropout 0.5
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 - batch size 128
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 - SGD Momentum 0.9
[6x6x256] MAX POOL3: 3x3 filters at stride 2 - Learning rate le-2

[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)



VGG Net (2014)

[Simonyan and Zisserman, 2014]

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

7.3% top 5 error in ILSVRC'14

Softmax

FC 1000

FC 4096

FC 4096

Poaol

3x3 conv, 256

3x3 conv, 384

Pool

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

AlexNet

Softmax
FC 1000
Softmax FC 4096
FC 1000 FC 4096
FC 4096 Pool
FC 4096 3x3 conv, 512
Pool 3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 cony, 512

3x3 conv, 512

Poal

Pool

3x3 conv, 512

N

3x3 conv,

3x3 conv, 512

g i

3x3 conv, £

3x3 conv, 512

A®] 3]

(6]

3X3 conv, £

3x3 conv, 512

Pool

Pool

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

Pool

Pool

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

Pool

Pool

3x3 conv, 64

3%x3 conv, 64

3x3 conv, 64

3x3 conv, 64

Input

Input

VGG16

VGG19



VGG Net (2014)

Why use smaller filters? (3x3 conv)

Stack of three 3x3 conv (stride 1) layers has same effective
receptive field as one 7x7 conv layer

But deeper, more non-linearities

And fewer parameters: 3 * (32C2) vs. 72C2 for C channels per
layer

Input A1 A2 A3

—____

T —

=]

|

Conv1 (3x3) Conv2 (3x3) Conv3 (3x3)



GoogleNet (2014)

[Szegedy et al., 2014] ;
Deeper networks, with computa i ;%
efficiency ii

- ILSVRC’14 classification e
winner (6.7% top 5 error) X —j
- 22 layers =] -
- Only 5 million parameters! itf,
12x less than AlexNet Inception module i
27x less than VGG-16 e

- Efficient “Inception” ;;//
module 2l

- No FC layers =



GoogleNet (2014)

Computational Efficiency

28x28x480
Filter
concatenation

28x28x128 _ 28x28x192 28x28x96  28x28x64

/ 4 N\ ~
1x1 conv, 3x3 cony, 5x5 conv, 1x1 cony,

128 1 ?2 9‘6 6A4
28x28x64  28x28x64 28x28x256
1 | I
1x1 cony, 1x1 cony,
64 64 3x3 pool

~

Module inDUt: Previous Layer
28x28x256

Inception module with dimension reduction

Without 1x1 convolutions

Conv Ops:

[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5X5 conv, 96] 28x28x96x5x5x256
Total: 854M ops

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5x5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358M ops



ResNet (2015)

[He et al., 2015]

Very deep networks using residual T relu
connections F(x) + x

- 152-layer model for ImageNet

X
F
) [re'” identity
- ILSVRC’15 classification winner
(3.57% top 5 error)
X
- Swept all classification and Residual block

detection competitions in
ILSVRC’15 and COCQO’15!

Softmax |
FC 1000 |
Pool ]
|
|

33 cm

3x3 conv, 64
—

3x3 cony, 64 l>

3x3 conv, 64 |
—

3x3 conv, 64

3x3 conv, 128 |>

3x3 conv, 128 |

|
|
L_3x8conv. 128 |
L_3x3conv, 128 |

L_3x3conv, 128 |
X nv, 128 /2
CScconved ]
33 conv, 64 >
L__3x3 conv 64 |
L33 conv g4 >
L__3x3 conv 64 1]
|

Pogl I

| Input ]




ResNet (2015)

Key Problem: Training very deep neural networks

Solution: Use network layers to fit a residual mapping instead of directly trying to
fit a desired underlying mapping.

Identity mapping:

H(x) = F(x) + x Trelu — i —
Hpo < 1) =F0) S H(x) = x if F(x) = 0

Use layers to
X fit residual
identity F(x) = H(X) - X
instead of
I H(x) directly

X X
“Plain” layers Residual block

F(x) relu

relu



Summary of Results

Inception-vd
a0 - 80 o .
Inception-v3 : ResNat-152
Resﬂet-S{Jo : d VGGE-16 ViGGE-19
7571 751 ResMet-101
. ResNet-34
£ 70 £ 701 Ay Reshiet-18
ey o
B & GoogleNet
3 z EMet
B 651 S 65 1
- =
2 L © Bn-NIN
"~ 60 F 60 5M 35M  65M  95M  125M  155M
BM-AlexNet
531 35 AlexMet
50 - 50 + . ' , ' . ' -
‘;\t\ 1«&- AL 49 abk o0 A f,’l q‘!! ak 0 5 10 15 20 25 30 35 an
pﬁ.“#‘ Pl"ﬂ'r E.E’ R QGG.,JGG \}.E'B ﬂﬁgﬁe\f Operatians [G-0Ops]
ol GO e Qe

An Analysis of Deep Neural Network Models for Practical Applications, 2017.



OPTIMIZATION



Much of ML Is optimization

Linear Classification Maximum Likelihood
n n
argminZHwHQ—l—CZfi n
w
i=1 i=1 arg meax Z log Po (:IL‘Z)
st 1 — gzl w <& i=1

& >0

K-Means

k
g min I =30 Y -

P, H2se —
) ’ ) jzllecj‘

90



Stochastic optimization

e Goal of machine learning :

— Minimize expected loss

min L(h) = B [loss(h(x), y)

given samples (z;,y;) i =1,2...m

e This is Stochastic Optimization

— Assume loss function is convex

91



Batch (sub)gradient descent for ML

* Process all examples together in each step

1 <= OL(w, x;,y;)
(k1) k) o (L T3y Yi
w — w M (n Z B )

1=1

where L is the regularized loss function

e Entire training set examined at each step
 Veryslow when n is very large

92



Stochastic (sub)gradient descent

e “Optimize” one example at a time

e Choose examples randomly (or reorder and
choose in order)
— Learning representative of example distribution

for 2 =1 to n:
8L w, i, Y;
k:)_m ( Yi)
ow

where L is the regularized loss function

wF D gl
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Stochastic (sub)gradient descent

for 2 =1 to n:
8L w, i, Y;
k)_m ( Yi)
ow

wFTD
where L is the regularized loss function

e Equivalent to online learning (the weight vector w
changes with every example)

e Convergence guaranteed for convex functions (to local
minimum)
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SGD convergence
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SGD - Issues

 Convergence very sensitive to
learning rate

("t) (oscillations near solution due to %

; Stochastic Gradi
probabilistic nature of sampling) crop> [y g S i 0

Descent;‘SGD}",--"' .
— Might need to decrease with time to 4
ensure the algorithm converges
eventually

" |

w
Gradient Descent

e Basically — SGD good for machine
learning with large data sets!
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Mini-batch SGD

Stochastic — 1 example per iteration
Batch — All the examples!
Mini-batch SGD:

— Sample m examples at each step and perform SGD
on them

Allows for parallelization, but choice of m
based on heuristics



Example: Text categorization

Example by Leon Bottou:

— Reuters RCV1 document corpus

* Predict a category of a document
— One vs. the rest classification

— n =781,000 training examples (documents)
— 23,000 test examples
— d =50,000 features

* One feature per word

* Remove stop-words

 Remove low frequency words



Example: Text categorization

e (Questions:

— (1) Is SGD successful at minimizing f(w,b)?

— (2) How quickly does SGD find the min of f(w,b)?
— (3) What is the error on a test set?

Training time Value of f(w,b) Test error
Standard SVM 23,642 secs 0.2275 6.02%
“Fast SVM” 66 secs 0.2278 6.03%
SGD SVM 1.4 secs 0.2275 6.02%

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast

(3) SGD-SVM test set error is comparable
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Optimization “Accuracy”

100

0.1

Training time (secs)

SGD SVM

SGD

Conventional

— SVM
LibLinear

0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09

Optimization accuracy (trainingCost-optimalTrainingCost)
Optimization quality: | f(w,b) — f (wO°Pt,borY) |

For optimizing f(w,b) within reasonable quality SGD-SVM is super fast



Practical Considerations

* Need to choose learning rate n and t,

OL(x;,V;
Wrr e wy — 0 <Wt+C ( lyl)>

t‘l‘to ow

* Leon suggests:

— Choose t,so that the expected initial updates are
comparable with the expected size of the weights

— Choosen:
e Select a small subsample
e Tryvariousratesn (e.g., 10, 1, 0.1, 0.01, ...
* Pick the one that most reduces the cost
* Use n for next 100k iterations on the full dataset



Learning rate comparison

Comparing Model Accuracy

N h".iyim“"*n‘ '*w'

. .' ‘ i T e -

5 0.65 W‘L ‘ - ! s

2 | IA

s |

gﬂ.ﬁﬂ-

g u/

w

epochs

100



ACCELERATED GRADIENT DESCENT



Stochastic gradient descent

Idea: Perform a parameter update for each training
example x(i) and label y(i)

Update: &= - 7 7, (& x(i), y()

Performs redundant computations for large
datasets



Momentum gradient descent

- ldea: Overcome ravine oscillations by momentum

SGD

Update:
(=
e Vi= pVe1t 7 Vpd(8)
e 4= f- Vi
SGD with
momentum @V’ 9)




Why Momentum Really Works

The momentum term reduces updates for
dimensions whose gradients change
directions.

¢} starting Point

Optimum

s, T Solu lon

The momentum term increases for dimensions
whose gradients point in the same directions.

Demo :
http://distill.pub/2017/momentum/



http://distill.pub/2017/momentum/

Nesterov accelerated gradient

 However, a ball that rolls down a hill,
blindly following the slope, is highly
unsatisfactory.

* We would like to have a smarter ball that has
a notion of where it is going so that it knows
to slow down before the hill slopes up again.

* Nesterov accelerated gradient gives us a
way of it.



Nesterov accelerated gradient

v =Y V-1 + NV (0 — yvs_1)
0 =0 — Ut

Approximation of the next
position of the
parameters( )



Nesterov accelerated gradient

Approximation of the next
position of the parameters’
gradient( )

v =Y V-1 + NV (0 — yvs_1)
0 =0 — Ut

Approximation of the next
position of the
parameters( )



Nesterov accelerated gradient

Approximation ofthe next
position of the parameters’
gradient( )

vy =Y Vi1 + NVeJ (0 — yvi_1)
0 =6 — UVt

Approximation of the next
position of the
parameters( )



Nesterov accelerated gradient

Approximation ofthe next
position of the parameters’
gradient( )
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0 =6 — UVt
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position of the
parameters( )



Nesterov accelerated gradient
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Nesterov accelerated gradient

Approximation ofthe next
position of the parameters’
gradient( )

vy =Y Vi1 + NVeJ (0 — yvi_1)
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Nesterov accelerated gradient

Approximation ofthe next
position of the parameters’
gradient( )

vy =Y Vi1 + NVeJ (0 — yvi_1)
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Nesterov accelerated gradient

Approximation ofthe next
position of the parameters’
gradient( )

vy =Y Vi1 + NVeJ (0 — yvi_1)
0 =6 — UVt

Approximation of the next
position of the
parameters( )



Nesterov accelerated gradient

e This anticipatory update prevents us from
going too fast and results in increased
responsiveness.

 Now , we can adapt our updates to the slope of
our error function and speed up SGD in turn.



What’s next...?

* We also want to adapt our updates to each
iIndividual parameter to perform larger or
smaller updates depending on their
iImportance.

e Adagrad

e Adadelta
e RMSprop
 Adam



Adagrad

e Adagrad adapts the learning rate to the

parameters
* Performing larger updates for infrequent
« Performing smaller updates for frequent parameters.

e EX.

 Training large-scale neural nets at Google that
learned to
recognize cats in Youtube videos.



Different learning rate for every
parameter

* Previous methods :

e we used the same learning rate n for all
parameters @

» Adagrad :

e It uses a different learning rate for every parameter
f;at every time stept



Adagrad

Qe
I\J

D

9t+1,i — 915,?: — 1" Gt,i

Adagra

7]
9t+1,i — gt,i " gt
T \/Gt,ii + €

- @ - @

gt; = VoJ(6;)

Vectoriz

€ Ui
Orr1 =0, —




Adagrad

o R o o
D s s ;

Otv1:="0t: —n-9¢4 Gy =

@ d )
Adagrad modifies the general
learning rate n based on the

Adagra

n
Opi1i = Oy . Gt i = VoJ(0;
T t4+1,i t.i \/Gt,ﬁ - gt.i gt 0J(0;)

Vectoriz

€ n
041 =0y —




Adagrad

Qe
I\J

/

D

9t+1,i — 91&,?: — 1" Gt,i

\_

G:1s a diagonal matrix where each
dlegardl(i,i) is the sum of the squares of
the gradients 6;up to time step t.

Adagra
Ui

Orv1. = 014

\/Gt,ii + € |

Vectoriz

041 =0y —

gt; = VoJ(6;)




Adagrad

Qe
I\J

/

D

9t+1,i — Qt,i — 1" Gt,i

\_

£1S a smoothing term that avoids division
by zero (usually on the order of 1e — 8).

Adagra
Ui

Orv1. = 014

\/Gt,ii + € |

Vectoriz

041 =0y —

gt; = VoJ(6;)




Adagrad’s advantages

« Advantages
o It is well-suited for dealing with sparse data.
o It greatly improved the robustness of SGD.

* [t eliminates the need to manually tune the learning
rate.



Adagrad’s disadvantage

e Disadvantage

e Main weakness is its accumulation of the
squared gradients in the denominator.



Adagrad’s disadvantage

* The disadvantage causes the learning rate to
shrink and become infinitesimally small. The
algorithm can no longer acquire additional
knowledge.

* The following algorithms aim to resolve this

flaw.
o Adadelta
« RMSprop
e Adam



Adadelta : extension of Adagrad

» Adadelta is an extension of Adagrad.

» Adagrad :
e It accumulate all past squared gradients.

 Adadelta :

e It restricts the window of accumulated past
gradients to some fixed size w.



Adadelta

* Instead of inefficiently storing, the sum of
gradients is recursively defined as a decaying
average of all past squared gradients.

El¢°]; = vE[g*]t—1 + (1 —7)g;

« E[g?]; :Therunning average at time step t.

 y . Afraction similarly to the Momentum term,
around 0.9



Adadelta

Adagra
7
Af; = —
r TG e oY
Adadelt

n
ﬂf?t = — gi
F VE[g%: + €

&

D

Al = —1 " gt
01 =0, + Ab,




Adadelta

Adagra SGD
Ui Aby = —n - gz
Afy = — © g ﬂ " gt
r “\,.-"Gﬂ + £ HH_l — 95 + &95

Replace the diagonal matrix G, with the
decaying average over past squared
gradients E[g?];

Adagglta 7
t VE[g?]: + e




Adadelta

Adagra SGD
n Ab; = —n - gt
Afy = — © gt t " gt.i
r \ Gt + € HH_l = 9& -+ &95

Replace the diagonal matrix G; with the
decaying average over past squared
gradients E[g?];

Adadelt Adadelt

n n
r VB e r * RMS|g]

gt
{




Adadelta
< El¢°]: = vE[9%)s—1 + (1 — v)g;
E[A6?], = YE[A6%], 1 + (1 —7)A62

RM S[Af8], = \/E[AO2], + €

Adadelt Adadelt

n n
Al = — Af, = —
F T VE e F *~ RMS|g]

gt
{




Adadelta

< Elg?]; =YE[g°]s—1 + (1 — )9}
E[A6?), = YE[A6%,_ + (1 — ) A8
We approximate learning rate with the RMS

of parameter updates until the previous
time step.

RM S[Af8], = \/E[AO2], + €

Adadelt Adadelt

n n
Al = — Af, = —
F t VE[g?: + Egt r : RMS[g]tg!’




Adadelta update rule

* Replacing the learning rate n in the previous
update rule with RMS[A8];-1 finally yields the
Adadelta update rule:

RMS[AB];—1
Al = —
" RMS[g],
Or1 =0, + AB,

 Note :



Adam

e Adam’s feature :

 Storing an exponentially decaying average of
past squared gradients v,like Adadelta and
RMSprop

« Keeping an exponentially decaying average of
past gradients m,, similar to momentum.

my = Bime—1 + (1 — B1)g:
The first moment (the

mean)
v = PBavi—1 + (1 — 52)952

The second moment
(the uncentered



Adam

« As m; and v;are Initialized as vectors of 0’s,
they are biased towards zero.
» Especially during the initial time steps
» Especially when the decay rates are small
* (i.e. 1 and B2 are close to 1).

e Counteracting these biases in Adam

Adam
iy = — 1t
t = 1T 4t n ﬂ
1 -6 Oiy1 =0, — — My
5 — VUt + €
!.. —
1— }'35 Note : default values of 0.9 for
B1, 0.999 for B,, and 10-8for ¢




Visualization
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Visualization

—— SGD

= Momentum
- NAG

- Adagrad
Adadelta
Rmsprop
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Enhancements comparison

- Comparing Model Accuracy

accuracy om validation set

—— Constant Ir

— Time-based

— Step decay

— Exponential decay
-— Adagrad

—  Adadelta

- RMSprop
- Adam

0 2 40 60 80 100
epochs




Summary

e There are two main ideas at play:

— Momentum : Provide consistency in update
directions by incorporating past update directions.

— Adaptive gradient : Scale the scale updates to
individual variables using the second moment in
that direction.

— This also relates to adaptively altering step length
for each direction.
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