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Neural Network Basics

 Given several inputs:
and several weights:
and a bias value:

 A neuron produces a single output:

 This sum is called the activation of the neuron
 The function s is called the activation function for 

the neuron
 The weights and bias values are typically initialized 

randomly and learned during training



McCulloch–Pitts “unit”
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Output is a “squashed” linear function of the inputs:
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A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do



Activation functions
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(a)is a step function or threshold function

(b)is a sigmoid function 1/(1 + e−x)

Changing the bias weight W0,i moves the threshold location



Expressiveness of perceptrons



Feed forward example



Feed Forward Neural Networks



Hidden-Layer

• The hidden layer (L2, L3) represent learned non-linear 
combination of input data

• For solving the XOR problem, we need a hidden layer
– some neurons in the hidden layer will activate only for some combination of 

input features
– the output layer can represent combination of the activations of the hidden 

neurons 

• Neural network with one hidden layer is a universal 
approximator
– Every function can be modeled as a shallow feed forward network
– Not all functions can be represented efficiently with a single hidden layer 

⇒ we still need deep neural networks



Going from Shallow to Deep Neural Networks
• Neural Networks can have several hidden layers
• Initializing the weights randomly and training all 

layers at once does hardly work 
• Instead we train layerwise on unannotated data 

(a.k.a. pre-training):
– Train the first hidden layer
– Fix the parameters for the first layer and train the 

second layer.
– Fix the parameters for the first & second layer, train the 

third layer

• After the pre-training, train all layers using your annotated data
• The pre-training on your unannotated data creates a high-level 

abstractions of the input data
• The final training with annotated data fine tunes all parameters in the 

network



How to learn the weights

• Initialise the weights i.e. Wk,j Wj,i  with random values
• With input entries we calculate the predicted output
• We compare the prediction with the true output
• The error is calculated
• The error needs to be sent as feedback for updating the weights



BACKPROPAGATION



How to Train a Neural Net?

Input
(Feature Vector)

Output
(Label)

• Put in Training inputs, get the output
• Compare output to correct answers: Look at loss function J
• Adjust and repeat!
• Backpropagation tells us how to make a single adjustment 

using calculus. 

Presenter
Presentation Notes
Last time we saw how a NN computes the output given an input, in 1 single forward pass.
Where does the training occur then?
We compare the output to the known truth, and calculate our loss J
According to our loss function, we adjust weights, and repeat.
The adjustment is basically gradient descent, however computing that for all the weights is difficult.
It involves a technique called “backpropagation”.




How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite direction
5. Iterate

Presenter
Presentation Notes
Let’s focus on these steps and let’s see it visually.
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Feedforward Neural Network
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Presenter
Presentation Notes
Let’s see this visually again:
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Presenter
Presentation Notes
Inputs are passed in.
Inputs are constant, they are rows of our training data.
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Presenter
Presentation Notes
Perform the matrix multiplications and activation functions in order to calculate each layer.
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Presenter
Presentation Notes
And then get our predictions.
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Presenter
Presentation Notes
Compare the predictions to the known ground truths.
Specifically, calculate the loss function.



How have we trained before?

• Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite direction
5. Iterate

Presenter
Presentation Notes
Let’s now see how step 3 works.



How to Train a Neural Net?

• How could we change the weights to make our Loss 
Function lower?

• Think of neural net as a function F: X -> Y

• F is a complex computation involving many weights W_k

• Given the structure, the weights “define” the function F (and 
therefore define our model)

• Loss Function is J(y,F(x))

Presenter
Presentation Notes
The goal is to change the weights to make the loss function lower.
Thinking of the NN as a function, the loss function is a function of J(y, F(X))



How to Train a Neural Net?

• Get 𝜕𝜕𝐽𝐽
𝜕𝜕𝑊𝑊𝑘𝑘

for every weight in the network.

• This tells us what direction to adjust each Wk if we want to 
lower our loss function.

• Make an adjustment and repeat!

Presenter
Presentation Notes
With this setting, from an abstract mathematical standpoint, there is no difference between this and classical ML gradient descent.
It’s just that the function involved is much more complicated, and computation of gradients is mathematically and computationally more challenging.
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Presenter
Presentation Notes
So we want to be able to compute the partial derivative of the loss function w.r. to the weights Wk



Backpropagation

𝜕𝜕𝐽𝐽
𝜕𝜕𝑊𝑊(2) = ( �𝑦𝑦 − 𝑦𝑦) ⋅ 𝑊𝑊 3 ⋅ 𝜎𝜎′ 𝑧𝑧(3) ⋅ 𝑎𝑎(2)

𝜕𝜕𝐽𝐽
𝜕𝜕𝑊𝑊(1) = �𝑦𝑦 − 𝑦𝑦 ⋅ 𝑊𝑊 3 ⋅ 𝜎𝜎′ 𝑧𝑧(3) ⋅ 𝑊𝑊 2 ⋅ 𝜎𝜎′ 𝑧𝑧 2 ⋅ 𝑋𝑋

𝜕𝜕𝐽𝐽
𝜕𝜕𝑊𝑊(3) = ( �𝑦𝑦 − 𝑦𝑦) ⋅ 𝑎𝑎(3)

• Use calculus, chain rule.
• Functions are chosen to have derivatives
• Numerical issues to be considered

Presenter
Presentation Notes
In this example network we’ve been seeing, equations work out to be these:

Early layers reuse computation from later layers. --> BACK propagation.
	You see how the gradient of W1 uses the gradient of W2 (point in the formula)

Early layers have more terms -> smaller numbers -> vanishing gradient
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Presenter
Presentation Notes
So visually, the flow is this.
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Presenter
Presentation Notes
We first compute this, math turns out to be simpler for the last layer.
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Presenter
Presentation Notes
Using that value, we compute the partial derivative for the previous layer. Back propagation!
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Presenter
Presentation Notes
We go all the way back like that.



How have we trained before?

Gradient Descent!

1. Make prediction
2. Calculate Loss
3. Calculate gradient of the loss function w.r.t. parameters
4. Update parameters by taking a step in the opposite direction
5. Iterate

Presenter
Presentation Notes
Step 4, once we have the gradient, we just take a step in the opposite direction.
Specifically; w = w – learning_rate * gradient
This part is the same as in ML.









Computational Graph

Definition: a data structure for storing gradients of variables used 
in computations.

● Node v represents variable
○ Stores value
○ Gradient
○ The function that created the node

● Directed edge (u,v) represents the partial derivative of u w.r.t. v

● To compute the gradient dL/dv, find the unique path from L to v 
and multiply the edge weights.



Backpropagation for neural nets

Given softmax activation, L2 loss, a point (x1, x2, x3, y) = (0. 1, 0.15, 
0.2, 1), compute the gradient



Backpropagation for neural nets: forward pass



Backpropagation for neural nets: backward pass

Presenter
Presentation Notes
Second but last line on the right should say .1
Last line should say .0108



Computation Graphs



CONVOLUTIONAL NEURAL 
NETWORKS



Motivation – Image Data

• So far, the structure of our neural network treats all inputs 
interchangeably.

• No relationships between the individual inputs
• Just an ordered set of variables

• We want to incorporate domain knowledge into the 
architecture of a Neural Network.

Presenter
Presentation Notes
Images though, have intrinsic properties which could and should be taken advantage of, in the models.



Motivation

• Image data has important structures, such as;

• ”Topology” of pixels
• Translation invariance
• Issues of lighting and contrast
• Knowledge of human visual system
• Nearby pixels tend to have similar values
• Edges and shapes
• Scale Invariance – objects may appear at different sizes in 

the image.

Presenter
Presentation Notes
The variables (i.e. pixels) have a natural “topology” (spatial component) that is meaningful.  This makes images different from say, loan default prediction where the variables do not have a natural topology.
CNNs are based on what we know about the structure of images and also what we know about the human visual system.  The human visual system has “receptive fields” which respond to horizontal bars, vertical bars, etc.




Motivation – Image Data

• Fully connected would require a vast number of parameters
• MNIST images are small (32 x 32 pixels) and in grayscale
• Color images are more typically at least (200 x 200) pixels x 

3 color channels (RGB) = 120,000 values.
• A single fully connected layer would require (200x200x3)2 = 

14,400,000,000 weights!
• Variance (in terms of bias-variance) would be too high
• So we introduce “bias” by structuring the network to look for 

certain kinds of patterns

Presenter
Presentation Notes
From a dimensionality standpoint, taking advantage of these structures mean much fewer parameters!

We still have a TON of parameters, but better than tons of tons of parameters.

Idea: expect to see the same basic features anywhere in the image.  So don’t learn different things for each location in the image (at least in the early layers)



Motivation

• Features need to be “built up”
• Edges -> shapes -> relations between shapes
• Textures

• Cat = two eyes in certain relation to one another  + cat fur 
texture.

• Eyes = dark circle (pupil) inside another circle.
• Circle = particular combination of edge detectors.
• Fur = edges in certain pattern.

Presenter
Presentation Notes
We don’t input these “features”, network learns them.
What we do is simplify network’s job by not inputting all the pixels as inputs to fully connected layers
Instead, we input a ”convoluted” version of that.



Kernels

• A kernel is a grid of weights “overlaid” on image, centered on 
one pixel

• Each weight multiplied with pixel underneath it
• Output over the centered pixel is ∑𝑝𝑝=1𝑃𝑃 𝑊𝑊𝑝𝑝 ⋅ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝
• Used for traditional image processing techniques:

o Blur
o Sharpen
o Edge detection
o Emboss

Presenter
Presentation Notes
The way we capture these structures is by making use of “kernels”




Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

Presenter
Presentation Notes
Input, kernel



Kernel: 3x3 Example

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

Output

Presenter
Presentation Notes
Overlay, and again, it’s a dot product.



Kernel: 3x3 Example

Input Kernel Output

3 2 1

1 2 3

1 1 1

-1 0 1

-2 0 2

-1 0 1

= 3 ⋅ −1 + 2 ⋅ 0 + 1 ⋅ 1
+ 1 ⋅ −2 + 2 ⋅ 0 + 3 ⋅ 2
+ 1 ⋅ −1 + 1 ⋅ 0 + 1 ⋅ 1

= −3 + 1 − 2 + 6 − 1 + 1 = 2

2

Presenter
Presentation Notes
So the output is just the dot product of entries, and the output in this example is 2.

We captured the essence of those 9 pixels.



Kernel: Example

Presenter
Presentation Notes
Input, kernel



Kernels as Feature Detectors

Can think of kernels as a ”local feature detectors”

Vertical Line Detector

-1 1 -1

-1 1 -1

-1 1 -1

Horizontal Line Detector

-1 -1 -1

1 1 1

-1 -1 -1

Corner Detector

-1 -1 -1

-1 1 1

-1 1 1



Convolutional Neural Nets

Primary Ideas behind Convolutional Neural Networks:

• Let the Neural Network learn which kernels are most useful
• Use same set of kernels across entire image (translation 

invariance)
• Reduces number of parameters and “variance” (from bias-

variance point of view)

Presenter
Presentation Notes
This is key.  We learn many different kernels, but they all “operate” across the entire image.

CNN will learn the best kernels that pertain to your training dataset, your problem.



Convolutions

Presenter
Presentation Notes
Convolution is the application of a kernel to the image (RGB)



Convolution Settings – Grid Size
Grid Size (Height and Width):
• The number of pixels a kernel “sees” at once
• Typically use odd numbers so that there is a “center” pixel
• Kernel does not need to be square

Height: 3, Width: 3 Height: 1, Width: 3 Height: 3, Width: 1

Presenter
Presentation Notes
We can specify how we want to apply the kernel. This changes the output dimensions, among other things.




Convolution Settings - Padding

Padding
• Using Kernels directly, there will be an “edge effect”
• Pixels near the edge will not be used as “center pixels” since 

there are not enough surrounding pixels
• Padding adds extra pixels around the frame
• So every pixel of the original image will be a center pixel as 

the kernel moves across the image
• Added pixels are typically of value zero (zero-padding)

Presenter
Presentation Notes
This is for the edge pixels for which kernel can’t fit the image, if we want that pixel at the center..



Without Padding

Presenter
Presentation Notes
We calculate the upper left entry of the output  by multiplying the kernel against the upper left 3x3 patch of the input (and summing).



With Padding

Presenter
Presentation Notes
Get the student familiar with the relation between the input size, kernel, and output size.
If there is no padding, the output will be smaller than the input since we ”lose” a little at the boundary.



Convolution Settings
Stride
• The ”step size” as the kernel moves across the image
• Can be different for vertical and horizontal steps (but usually 

is the same value)
• When stride is greater than 1, it scales down the output 

dimension

Presenter
Presentation Notes
Smaller stride = higher “resolution” of output image



Stride 2 Example – No Padding

3

0



Stride 2 Example – With Padding

-1 2

3

Presenter
Presentation Notes
We can have strides and padding at the same time too.

Notice how the output size depends on these parameters.



Convolutional Settings - Depth

• In images, we often have multiple numbers associated with 
each pixel location.

• These numbers are referred to as “channels”
o RGB image – 3 channels
o CMYK – 4 channels

• The number of channels is referred to as the “depth”
• So the kernel itself will have a “depth” the same size as the 

number of input channels
• Example: a 5x5 kernel on an RGB image 

o There will be 5x5x3 = 75 weights

Presenter
Presentation Notes
Important to emphasize that the kernel will look at the entire depth of the input.
On first layer, the depth will be just RGB or CMYK, but for later layers the input depth may be quite high, so the kernels will have a lot of weights.
They will see this when we walk through some architectures in later lectures.



Convolutional Settings - Depth

• The output from the layer will also have a depth
• The networks typically train many different kernels
• Each kernel outputs a single number at each pixel location
• So if there are 10 kernels in a layer, the output of that layer 

will have depth 10.



Pooling

• Idea: Reduce the image size by mapping a patch of pixels to 
a single value.

• Shrinks the dimensions of the image.
• Does not have parameters, though there are different types of 

pooling operations.

Presenter
Presentation Notes
Move on to pooling.
Can emphasize that there are no weights to be learned here.  It is just a prescribed operation.



Pooling: Max-pool
• For each distinct patch, represent it by the maximum
• 2x2 maxpool shown below



Pooling: Average-pool
• For each distinct patch, represent it by the average
• 2x2 avgpool shown below.



ConvNet: CONV, RELU, POOL
and FC Layers



Convolution Layer



Convolution Layer
consider a second, 
green filter



Convolution Layer



ReLU (Rectified Linear Units)Layer

• This is a layer of neurons that
applies  the activation function
f(x)=max(0,x).

• It increases the nonlinear properties
of the decision function and of the
overall network without affecting
the receptive fields of the
convolution layer.

• Other functions are also used to  
increase nonlinearity, for example
the  hyperbolic tangent 
f(x)=tanh(x), and  the sigmoid
function.

• This is also known as a ramp
function.



A Basic ConvNet



What is convolution of an
image  with a filter



Details about the 
convolution layer



Details about the 
convolution layer



Details about the 
convolution layer



Convolution layer
examples



Pooling Layer



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 7
4Where ReLu is used as f.

Convolutional Neural Networks

+ 
ReLu



Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 7 - 27 Jan 2016Lecture 7 - 7
5

Kernel= [1,0,1 
0,1,0 
1,0,1]

Convolutional Neural Networks

1 0 1
0 1 0
1 0 1



Applications



Applications



CNN ARCHITECTURES



ImageNet Challenge
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Image Classification
Classes – 1000
Train images - 1,281,167
(732–1300) 

Val images - 50,000 (50) 

Test images - 100,000 
(100) 

https://en.wikipedia.org/wiki/ImageNet#ImageNet_Challenge


AlexNet (2012)
[Krizhevsky et al. 2012] 

Architecture: 
CONV1 -> MAX POOL1 -> NORM1 -> CONV2 -> MAX POOL2 -> NORM2 ->
CONV3 -> CONV4 -> CONV5 -> Max -> POOL3 -> FC6 -> FC7 ->  FC8 



AlexNet (2012)
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) 

Other details:

- first use of ReLU
- used Norm layers 
(not common 
anymore) - heavy 
data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2 



VGG Net (2014)
[Simonyan and Zisserman, 2014] 

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net) 

Only 3x3 CONV stride 1, pad 1 
and 2x2 MAX POOL stride 2 

7.3% top 5 error in ILSVRC’14



VGG Net (2014)
Why use smaller filters? (3x3 conv) 
Stack of three 3x3 conv (stride 1) layers has same effective 
receptive field as one 7x7 conv layer 
But deeper, more non-linearities 
And fewer parameters: 3 * (32C2) vs. 72C2 for C channels per 
layer 



GoogleNet (2014)
[Szegedy et al., 2014]

Deeper networks, with computational 
efficiency 

- ILSVRC’14 classification 
winner (6.7% top 5 error) 
- 22 layers 
- Only 5 million parameters! 
12x less than AlexNet
27x less than VGG-16 
- Efficient “Inception” 
module 
- No FC layers 



GoogleNet (2014) 

Without 1x1 convolutions

Conv Ops: 
[1x1 conv, 128] 28x28x128x1x1x256 
[3x3 conv, 192] 28x28x192x3x3x256 
[5x5 conv, 96] 28x28x96x5x5x256 
Total: 854M ops 

Conv Ops: 
[1x1 conv, 64] 28x28x64x1x1x256 
[1x1 conv, 64] 28x28x64x1x1x256 
[1x1 conv, 128] 28x28x128x1x1x256 
[3x3 conv, 192] 28x28x192x3x3x64 
[5x5 conv, 96] 28x28x96x5x5x64 
[1x1 conv, 64] 28x28x64x1x1x256 
Total: 358M ops 

Computational Efficiency



ResNet (2015)
[He et al., 2015] 

Very deep networks using residual 
connections

- 152-layer model for ImageNet 

- ILSVRC’15 classification winner 
(3.57% top 5 error) 

- Swept all classification and 
detection competitions in 
ILSVRC’15 and COCO’15! 



ResNet (2015)
Key Problem: Training very deep neural networks

Solution: Use network layers to fit a residual mapping instead of directly trying to 
fit a desired underlying mapping.



Summary of Results



OPTIMIZATION



Much of ML is optimization
Linear Classification Maximum Likelihood

K-Means
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Stochastic optimization
• Goal of machine learning :

– Minimize expected loss

given samples

• This is Stochastic Optimization
– Assume loss function is convex
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Batch (sub)gradient descent for ML
• Process all examples together in each step

• Entire training set examined at each step
• Very slow when n is very large
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Stochastic (sub)gradient descent
• “Optimize” one example at a time
• Choose examples randomly (or reorder and 

choose in order)
– Learning representative of example distribution
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Stochastic (sub)gradient descent

• Equivalent to online learning (the weight vector w 
changes with every example)

• Convergence guaranteed for convex functions (to local 
minimum)
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SGD convergence
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SGD - Issues

• Convergence very sensitive to 
learning rate 
(   )  (oscillations near solution due to 
probabilistic nature of sampling)
– Might need to decrease with time to 

ensure the algorithm converges 
eventually

• Basically – SGD good for machine 
learning with large data sets!
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Mini-batch SGD

• Stochastic – 1 example per iteration
• Batch – All the examples!
• Mini-batch SGD: 

– Sample m examples at each step and perform SGD 
on them

• Allows for parallelization, but choice of m 
based on heuristics
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Example: Text categorization

• Example by Leon Bottou:
– Reuters RCV1 document corpus

• Predict a category of a document
– One vs. the rest classification

– n = 781,000 training examples (documents)
– 23,000 test examples
– d = 50,000 features

• One feature per word
• Remove stop-words
• Remove low frequency words



Example: Text categorization

• Questions:
– (1) Is SGD successful at minimizing f(w,b)?
– (2) How quickly does SGD find the min of f(w,b)?
– (3) What is the error on a test set?

104

Training time         Value of f(w,b)        Test error 
Standard SVM
“Fast SVM”
SGD SVM

(1) SGD-SVM is successful at minimizing the value of f(w,b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable



Optimization “Accuracy”

Optimization quality: | f(w,b) – f (wopt,bopt) |

Conventional
SVM

SGD SVM

For optimizing f(w,b) within reasonable quality SGD-SVM is super fast



Practical Considerations

• Need to choose learning rate η and t0

• Leon suggests:
– Choose t0 so that the expected initial updates are 

comparable with the expected size of the weights
– Choose η:

• Select a small subsample
• Try various rates η (e.g., 10, 1, 0.1, 0.01, …)
• Pick the one that most reduces the cost
• Use η for next 100k iterations on the full dataset

𝑤𝑤𝑡𝑡+1 ← 𝑤𝑤𝑡𝑡 −
𝜂𝜂0

𝑡𝑡 + 𝑡𝑡0
𝑤𝑤𝑡𝑡 + 𝐶𝐶

𝜕𝜕𝜕𝜕(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝜕𝜕𝜕𝜕



Learning rate comparison



ACCELERATED GRADIENT DESCENT



Stochastic gradient descent

Idea: Perform a parameter update for each training 
example x(i) and label y(i)

Update: 𝜃𝜃 = 𝜃𝜃 - 𝜂𝜂 ∙ ∇𝜃𝜃 J (𝜃𝜃; x(i), y(i))

Performs redundant computations for large
datasets



Momentum gradient descent
• Idea: Overcome ravine oscillations by momentum
•

Update:

• vt = 𝛾𝛾 vt-1 + 𝜂𝜂 ∙ ∇𝜃𝜃 J(𝜃𝜃)

• 𝜃𝜃 = 𝜃𝜃 - vt

SGD

SGD with
momentum



Why Momentum ReallyWorks

The momentum term increases for dimensions 
whose  gradients point in the same directions.

Demo :
http://distill.pub/2017/momentum/

The momentum term reduces updates for  
dimensions whose gradients change
directions.

http://distill.pub/2017/momentum/


Nesterov accelerated gradient

• However, a ball that rolls down a hill, 
blindly  following the slope, is highly
unsatisfactory.

• We would like to have a smarter ball that has 
a  notion of where it is going so that it knows 
to slow  down before the hill slopes up again.

• Nesterov accelerated gradient gives us a 
way of it.



Nesterov accelerated gradient

Approximation of the next 
position of  the
parameters(predict)
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Nesterov accelerated gradient

• This anticipatory update prevents us from 
going  too fast and results in increased
responsiveness.

• Now , we can adapt our updates to the slope of 
our  error function and speed up SGD in turn.



What’snext…?

• We also want to adapt our updates to each  
individual parameter to perform larger or 
smaller  updates depending on their
importance.

• Adagrad
• Adadelta
• RMSprop
• Adam



Adagrad

• Adagrad adapts the learning rate to the
parameters

• Performing larger updates for infrequent
• Performing smaller updates for frequent parameters.

• Ex.
• Training large-scale neural nets at Google that 

learned to
recognize cats in Youtube videos.



Different learning rate for every
parameter

• Previous methods :
• we used the same learning rate 𝜼𝜼 for all 

parameters𝜽𝜽

• Adagrad :
• It uses a different learning rate for every parameter 
𝜃𝜃𝑖𝑖at  every time step 𝑡𝑡



Adagrad

Adagra
d

SG
D 𝐺𝐺𝑡𝑡 =

ℝ𝑑𝑑×

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectoriz
e



Adagrad

Adagra
d

SG
D 𝐺𝐺𝑡𝑡 =

ℝ𝑑𝑑×

⋯ ⋯

Adagrad modifies the general 
learning  rate 𝜼𝜼 based on the 
past gradients  that have been 
computed for 𝜽𝜽𝒊𝒊

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectoriz
e



Adagrad

Adagra
d

SG
D

𝐺𝐺𝑡𝑡 is a diagonal matrix where each
diagonalelement (𝑖𝑖,𝑖𝑖) is the sum of the squares of 
the  gradients 𝜃𝜃𝑖𝑖up to time step 𝑡𝑡.

𝐺𝐺𝑡𝑡 =

ℝ𝑑𝑑×

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectoriz
e



Adagrad

Adagra
d

SG
D

𝜀𝜀 is a smoothing term that avoids division 
by  zero (usually on the order of 1e − 8).

𝐺𝐺𝑡𝑡 =

ℝ𝑑𝑑×

⋯ ⋯

⋯ ⋯

⋯ ⋯

⋯
⋯⋯⋯

⋯ ⋯

Vectoriz
e



Adagrad’sadvantages

• Advantages :
• It is well-suited for dealing with sparse data.
• It greatly improved the robustness of SGD.
• It eliminates the need to manually tune the learning

rate.



Adagrad’sdisadvantage

• Disadvantage :
• Main weakness is its accumulation of the

squared  gradients in the denominator.



Adagrad’sdisadvantage

• The disadvantage causes the learning rate to 
shrink  and become infinitesimally small. The 
algorithm  can no longer acquire additional
knowledge.

• The following algorithms aim to resolve this
flaw.

• Adadelta
• RMSprop
• Adam



Adadelta : extension of Adagrad

• Adadelta is an extension of Adagrad.

• Adagrad :
• It accumulate all past squared gradients.

• Adadelta :
• It restricts the window of accumulated past 

gradients to  some fixed size 𝑤𝑤 .



Adadelta

• Instead of inefficiently storing, the sum of 
gradients  is recursively defined as a decaying 
average of all  past squared gradients.

• 𝐸𝐸[𝑔𝑔2]𝑡𝑡 ：The running average at time step 𝑡𝑡.
• 𝛾𝛾 : A fraction similarly to the Momentum term,

around  0.9



Adadelta

GDSAdagra
d

Adadelt
a



Adadelta

GDSAdagra
d

Replace the diagonal matrix 𝐺𝐺𝑡𝑡 with the 
decaying  average over past squared 
gradients 𝐸𝐸[𝑔𝑔2]𝑡𝑡

Adadelta



Adadelta

SGDAdagra
d

Adadelt
a

Adadelt
a

Replace the diagonal matrix 𝐺𝐺𝑡𝑡 with the 
decaying  average over past squared 
gradients 𝐸𝐸[𝑔𝑔2]𝑡𝑡



Adadelta

Adadelt
a

Adadelt
a



Adadelta

Adadelt
a

Adadelt
a

We approximate learning rate with the RMS 
of  parameter updates until the previous 
time step.



Adadelta update rule

• Replacing the learning rate 𝜂𝜂 in the previous 
update  rule with 𝑅𝑅𝑀𝑀𝑆𝑆[∆𝜃𝜃]𝑡𝑡−1 finally yields the 
Adadelta  update rule:

• Note : we do not even need to set a 
default  learning rate



Adam

• Adam’s feature :
• Storing an exponentially decaying average of 

past  squared gradients 𝑣𝑣𝑡𝑡 like Adadelta and
RMSprop

• Keeping an exponentially decaying average of 
past  gradients 𝑚𝑚𝑡𝑡 ,  similar to momentum.

The first moment (the
mean)

The second moment 
(the  uncentered 



Adam

• As 𝑚𝑚𝑡𝑡 and 𝑣𝑣𝑡𝑡are initialized as vectors of 0’s, 
they  are biased towards zero.

• Especially during the initial time steps
• Especially when the decay rates are small

• (i.e. β1 and β2 are close to 1).

• Counteracting these biases in Adam
Adam

Note : default values of 0.9 for 
𝛽𝛽1,  0.999 for 𝛽𝛽2, and 10−8 for 𝜀𝜀



Visualization



Visualization



Enhancements comparison



Summary

• There are two main ideas at play:
– Momentum : Provide consistency in update 

directions by incorporating past update directions.
– Adaptive gradient : Scale the scale updates to 

individual variables using the second moment in 
that direction.

– This also relates to adaptively altering step length 
for each direction.
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