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OVERVIEW



What is Machine Learning?

It is very hard to write programs that solve problems like recognizing 
a face.
We don’t know what program to write because we don’t know 

how our brain does it.
Even if we had a good idea about how to do it, the program 

might be horrendously complicated.
Instead of writing a program by hand, we collect lots of examples

that specify the correct output for a given input.
A machine learning algorithm then takes these examples and 

produces a program that does the job.
The program produced by the learning algorithm may look very 

different from a typical hand-written program. It may contain 
millions of numbers.

If we do it right, the program works for new cases as well as the 
ones we trained it on.



A classic example of a task that requires machine 

learning: It is very hard to say what makes a 2



Some more examples of tasks that are best 
solved by using a learning algorithm

Recognizing patterns:

Facial identities or facial expressions

Handwritten or spoken words

Medical images

Generating patterns:

Generating images or motion sequences

Recognizing anomalies:

Unusual sequences of credit card transactions 

Unusual patterns of sensor readings in a nuclear power plant 
or unusual sound in your car engine.

Prediction:

Future stock prices or currency exchange rates 



Some web-based examples of machine learning

The web contains a lot of data. Tasks with very big datasets often 
use machine learning

especially if the data is noisy or non-stationary.

Spam filtering, fraud detection: 

The enemy adapts so we must adapt too.

Recommendation systems:

Lots of noisy data. Million dollar prize!

Information retrieval:

Find documents or images with similar content.

Data Visualization:

Display a huge database in a revealing way



REGRESSION



Linear Basis Function Models (1)

Example: Polynomial Curve Fitting



Linear Basis Function Models (2)

Generally

where Áj(x) are known as basis functions.

Typically, Á0(x) = 1, so that w0 acts as a bias.

In the simplest case, we use linear basis 
functions : Ád(x) = xd.



Linear Basis Function Models (3)

Polynomial basis functions:

These are global; a small 
change in x affect all basis 
functions.



Linear Basis Function Models (4)

Gaussian basis functions:

These are local; a small change 
in x only affect nearby basis 
functions. ¹j and s control 
location and scale (width).



Linear Basis Function Models (5)

Sigmoidal basis functions:

where

Also these are local; a small 
change in x only affect nearby 
basis functions. ¹j and s
control location and scale 
(slope).



Least Squares Estimation



Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function 
with added Gaussian noise:

which is the same as saying,

Given observed inputs,                            , and targets,
, we obtain the likelihood function  

where



Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

where

is the sum-of-squares error.



Computing the gradient and setting it to zero yields

Solving for w, we get 

where

Maximum Likelihood and Least Squares (3)

The Moore-Penrose 
pseudo-inverse,       .



Geometry of Least Squares

Consider

S is spanned by                    .

wML minimizes the distance 
between t and its orthogonal 
projection on S, i.e. y.

N-dimensional
M-dimensional



Normal Equations

If is invertible,

When is invertible ?
Recall: Full rank matrices are invertible.

What if is not invertible ?  

p xp p x1 p x1



Gradient Descent

1
4

Even when is invertible, might be computationally expensive if A is huge.

Treat as optimization problem

Observation: J(β) is convex in β.

J(β1)

β1
β1

β2

How to find the minimizer?

J(β1, β2)



Gradient Descent

Even when is invertible, might be computationally expensive if A is huge.

Initialize:

Update:

0 if =

Stop: when some criterion met e.g. fixed # iterations, or < ε.

Since J() is convex, move along negative of gradient

step size



Effect of step-‐size α

Large α => Fast convergence but larger residual error  
Also possible oscillations

Small α => Slow convergence but small residual error



0th Order

Polynomial

n=10



1st Order

Polynomial

Slide courtesy of William Cohen



3rd Order

Polynomial

Slide courtesy of William Cohen



9th Order

Polynomial

Slide courtesy of William Cohen



Over-fitting

Root-Mean-Square (RMS) Error

Slide courtesy of William Cohen



Polynomial Coefficients

Slide courtesy of William Cohen



Regularization

Penalize large coefficient values

Slide courtesy of William Cohen



Regularization:

Slide courtesy of William Cohen



Over Regularization

Slide courtesy of William Cohen



Regularization



Regularized Least Squares (1)

Consider the error function:

With the sum-of-squares error function and a 
quadratic regularizer, we get  

which is minimized by

Data term + Regularization term

¸ is called the 
regularization 
coefficient.



Regularized Least Squares (2)

With a more general regularizer, we have

Lasso Quadratic



Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a 
quadratic 
regularizer. 



CLASSIFICATION



Discrete and Continuous Labels

Sports  
Science  
News

Classification

Regression

Anemic cell  
Healthy cell

Stock Market  
Prediction

Y = ?

X = Feb01

X = Document Y = Topic X = Cell Image Y = Diagnosis



An example application

An emergency room in a hospital measures 17 
variables (e.g., blood pressure, age, etc) of newly 
admitted patients. 

A decision is needed: whether to put a new patient in 
an intensive-care unit. 

Due to the high cost of ICU, those patients who may 
survive less than a month are given higher priority. 

Problem: to predict high-risk patients and discriminate 
them from low-risk patients. 



Another application

A credit card company receives thousands of 
applications for new cards. Each application 
contains information about an applicant, 
age 

Marital status

annual salary

outstanding debts

credit rating

etc. 

Problem: to decide whether an application should 
approved, or to classify applications into two 
categories, approved and not approved. 



Data: A set of data records (also called 
examples, instances or cases) described 
by

k attributes: A1, A2, … Ak. 

a class: Each example is labelled with a pre-
defined class. 

Goal: To learn a classification model from 
the data that can be used to predict the 
classes of new (future, or test) 
cases/instances.

The data and the goal



Supervised learning process: two steps

◼ Learning (training): Learn a model using the 

training data

◼ Testing: Test the model using unseen test data

to assess the model accuracy

,
cases test ofnumber  Total

tionsclassificacorrect  ofNumber 
=Accuracy



Least squares classification



Least squares classification



Least squares classification



From Linear to Logistic Regression

Assumes the following functional form for P(Y|X):

Logistic function applied to a linear  
function of the data

Logistic  function
(or Sigmoid):

z

lo
gi

t
(z

)

Features can be discrete or continuous!



Logistic Regression is a Linear  Classifier!

Assumes the following functional form for P(Y|X):

Decision boundary:

1

1

(Linear Decision Boundary)



Logistic Regression is a Linear  Classifier!

Assumes the following functional form for P(Y|X):

1

1          



Logistic Regression



Logistic Regression

w*= argmaxw L(w)



Logistic Regression



Logistic Regression



Properties of Error function



Gradient Descent

Problem: min f(x)
f(x): differentiable
g(x): gradient of f(x)
Negative gradient is

steepest descent
direction. 

At each step move in
the gradient direction
so that there is 
“sufficient decrease”.



Gradient Descent



SUPPORT VECTOR MACHINES



Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you 

classify this data?



Linear Classifiers
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Linear Classifiers
f x

a

yest

denotes +1
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Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you 

classify this data?



Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

Any of these would 

be fine..

..but which is best?



Classifier Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

Define the margin

of a linear 

classifier as the 

width that the 

boundary could be 

increased by 

before hitting a 

datapoint.



Maximum Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum 

margin linear 

classifier is the 

linear classifier 

with the, um, 

maximum margin.

This is the 

simplest kind of 

SVM (Called an 

LSVM)

Linear SVM



Maximum Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum 

margin linear 

classifier is the 

linear classifier 

with the, um, 

maximum margin.

This is the 

simplest kind of 

SVM (Called an 

LSVM)

Support Vectors 

are those 

datapoints that the 

margin pushes up 

against

Linear SVM



Why Maximum Margin?

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum 

margin linear 

classifier is the 

linear classifier 

with the, um, 

maximum margin.

This is the 

simplest kind of 

SVM (Called an 

LSVM)

Support Vectors 

are those 

datapoints that the 

margin pushes up 

against

1. Intuitively this feels safest. 

2. If we’ve made a small error in the 
location of the boundary (it’s been 
jolted in its perpendicular direction) 
this gives us least chance of causing a 
misclassification.

3. LOOCV is easy since the model is 
immune to removal of any non-
support-vector datapoints.

4. There’s some theory (using VC 
dimension) that is related to (but not 
the same as) the proposition that this 
is a good thing.

5. Empirically it works very very well.



Specifying a line and margin

How do we represent this mathematically?

…in m input dimensions?

Plus-Plane

Minus-Plane

Classifier Boundary



Specifying a line and margin

Plus-plane   =    { x : w . x + b = +1 }

Minus-plane =   { x : w . x + b = -1 }

Plus-Plane

Minus-Plane

Classifier Boundary

Classify as.. +1 if w . x + b >= 1

-1 if w . x + b <= -1

Universe 
explodes

if -1 < w . x + b < 1



Support vector machines

Let {x1, ..., xn} be our data set and let yi  {1,-1} be the class label 
of xi
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Large-margin Decision Boundary
The decision boundary should be as far away 

from the data of both classes as possible

We should maximize the margin, m

76

Class 1

Class 2

m



Finding the Decision Boundary

The decision boundary should classify all points correctly 

The decision boundary can be found by solving the 
following constrained optimization problem

This is a constrained optimization problem. Solving it 
requires to use Lagrange multipliers

77



KKT Conditions

Problem:
min
𝑥

𝑓(𝑥) sub. to: gi x ≤ 0 ∀ 𝑖

Lagrangian: 𝐿 𝑥, 𝜇 = 𝑓 𝑥 + σ𝑖 𝜇𝑖𝑔𝑖(𝑥)

Conditions:

Stationarity: 𝛻xL x, 𝜇 = 0.

Primal feasibility: 𝑔𝑖 𝑥 ≤ 0 ∀ 𝑖.

Dual feasibility: 𝜇𝑖 ≥ 0.

Complementary slackness: 𝜇𝑖𝑔𝑖 𝑥 = 0.



The Lagrangian is

ai≥0

Note that ||w||2 = wTw

79

Finding the Decision Boundary



Setting the gradient of  L w.r.t. w and b to zero, 
we have

80











=




=




0

,0

b

L

k
w

L
k

( )( )

 



= ==

=



















+−+=

=+−+=

n

i

m

k

k

i

k

ii

m

k

kk

n

i

i

T

ii

T

bxwyww

bxwywwL

1 11

1

1
2

1

1
2

1

a

a

n: no of examples, m: dimension of the space

The Dual Problem



The Dual Problem

If we substitute                             to     , we have 

Since 

This is a function of ai only
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The Dual Problem
The new objective function is in terms of ai only

It is known as the dual problem: if we know w, we know all ai; if we know all 
ai, we know w

The original problem is known as the primal problem

The objective function of the dual problem needs to be maximized (comes 
out from the KKT theory)

The dual problem is therefore:

82

Properties of ai when we introduce 
the Lagrange multipliers

The result when we differentiate the 
original Lagrangian w.r.t. b



The Dual Problem

This is a quadratic programming (QP) problem

A global maximum of ai can always be found

w can be recovered by

83



Characteristics of the Solution

Many of the ai are zero

Complementary slackness: 𝛼𝑖 1 − 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 = 0

Sparse representation: w is a linear combination of a small 
number of data points

xi with non-zero ai are called support vectors (SV)

The decision boundary is determined only by the SV

Let tj (j=1, ..., s) be the indices of the s support vectors. We 
can write
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A Geometrical Interpretation

85

a6=1.4

Class 1

Class 2

a1=0.8

a2=0

a3=0

a4=0

a5=0

a7=0

a8=0.6

a9=0

a10=0



Characteristics of the Solution

For testing with a new data z

Compute                                                      and 

classify z as class 1 if the sum is positive, and 

class 2 otherwise

Note: w need not be formed explicitly
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Non-linearly Separable Problems

We allow “error” xi in classification; it is based on the output of 
the discriminant function wTx + b

xi approximates the number of misclassified samples

87

Class 1

Class 2



Soft Margin Hyperplane

The new conditions become

xi are “slack variables” in optimization
Note that xi=0 if there is no error for xi

xi is an upper bound of the number of errors

We want to minimize

C : tradeoff parameter between error and margin
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The Optimization Problem
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The Dual Problem
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The Optimization Problem

The dual of this new constrained optimization problem is

New constraints derived from                            since μ and α are 
positive.

w is recovered as

This is very similar to the optimization problem in the linear 
separable case, except that there is an upper bound C on ai now

Once again, a QP solver can be used to find ai
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The algorithm try to keep ξ low, while maximizing the margin

The algorithm does not minimize the number of error. Instead, 

it minimizes the sum of distances from the hyperplane.

When C increases the number of errors tend to lower. At the 
limit of C tending to infinite, the solution tend to that given 
by the hard margin formulation, with 0 errors
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Soft margin is more robust to outliers
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KERNEL METHODS



Extension to Non-linear Decision Boundary

So far, we have only considered large-margin classifier with 
a linear decision boundary

How to generalize it to become nonlinear?
Key idea: transform xi to a higher dimensional space to 

“make life easier”
Input space: the space the point xi are located
Feature space: the space of f(xi) after transformation

Why transform?
Linear operation in the feature space is equivalent to non-linear 

operation in input space
Classification can become easier with a proper transformation. 

In the XOR problem, for example, adding a new feature of 
x1x2 make the problem linearly separable
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XOR
X Y

0 0 0

0 1 1

1 0 1

1 1 0

96

Is not linearly separable

X Y XY

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Is linearly separable



Find a feature space
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Transforming the Data 

Computation in the feature space can be costly 
because it is high dimensional
The feature space is typically infinite-dimensional!

The kernel trick comes to rescue

98

f(  )

f(  )

f(  )
f(  )f(  )

f(  )

f(  )
f(  )

f(.)
f(  )

f(  )

f(  )

f(  )
f(  )

f(  )

f(  )

f(  )
f(  )

f(  )

Feature spaceInput space
Note: feature space is of higher dimension 

than the input space in practice



The Kernel Trick
Recall the SVM optimization problem

The data points only appear as inner product

As long as we can calculate the inner product in the feature 
space, we do not need the mapping explicitly

Many common geometric operations (angles, distances) can 
be expressed by inner products

Define the kernel function as

99



An Example for f(.) and K(.,.)

Suppose f(.) is given as follows

An inner product in the feature space is

So, if we define the kernel function as follows, there is no 
need to carry out f(.) explicitly

This use of kernel function to avoid carrying out f(.) 
explicitly is known as the kernel trick
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Kernels

Given a mapping:

a kernel is represented as the inner product

A kernel must satisfy the Mercer’s condition:

101
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Modification Due to Kernel Function

Change all inner products to kernel functions

For training,

102

Original

With kernel 
function



Modification Due to Kernel Function

For testing, the new data z is classified as class 1 
if f  0, and as class 2 if f <0

103

Original

With kernel 
function



More on Kernel Functions

Since the training of SVM only requires the value of 
K(xi, xj), there is no restriction of the form of xi and xj

xi can be a sequence or a tree, instead of a feature vector

K(xi, xj) is just a similarity measure comparing xi and xj

For a test object z, the discriminant function essentially 
is a weighted sum of the similarity between z and a 
pre-selected set of objects (the support vectors)
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Kernel Functions

In practical use of SVM, the user specifies the kernel 
function; the transformation f(.) is not explicitly 
stated

Given a kernel function K(xi, xj), the transformation f(.) 
is given by its eigenfunctions (a concept in functional 
analysis)
Eigenfunctions can be difficult to construct explicitly

This is why people only specify the kernel function without 
worrying about the exact transformation

Another view: kernel function, being an inner product, 
is really a similarity measure between the objects 
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A kernel is associated to a transformation

Given a kernel, in principle it should be recovered the 
transformation in the feature space that originates 
it.

K(x,y) = (xy+1)2= x2y2+2xy+1

It corresponds the transformation
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Examples of Kernel Functions

Polynomial kernel of degree d

Polynomial kernel up to degree d

Radial basis function kernel with width s

The feature space is infinite-dimensional

Sigmoid with parameter k and q

It does not satisfy the Mercer condition on all k and q

107



Building new kernels
If k1(x,y) and k2(x,y) are two valid kernels then the following 

kernels are valid

Linear Combination

Exponential

Product

Polynomial transformation (Q: polynomial with non negative 
coeffcients)

Function product (f: any function)
108
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Polynomial kernel

Ben-Hur et al, PLOS computational Biology 4 (2008)
109



Gaussian RBF kernel

Ben-Hur et al, PLOS computational Biology 4 (2008)
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CROSSVALIDATION



Involves repeatedly drawing samples from a training set and refitting 
a model of interest on each sample in order to obtain more 
information about the fitted model.

Example: We can estimate the variability of a linear regression fit by 
repeatedly drawing different samples from the training data, 
fitting a OLS regression to each new sample, and then examining 
the extent to which the resulting fits differ.

Model Assessment: having chosen a final model, estimating its 
prediction error on new data.

Model Selection: estimating the performance of different models in 
order to choose the best one.

Resampling Methods



Cross-Validation

Used to estimate test set prediction error rates 
associated with a given machine learning method to 
evaluate its performance, or to select the appropriate 
level of model flexibility.

Bootstrap

Used most commonly to provide a measure of accuracy 
of a parameter estimate or of a given machine learning 
method.

Resampling Methods



The generalization performance of a machine learning 
method relates to its prediction capability on independent 
test sets.

Assessment of this performance is extremely important in 
practice, since it guides the choice of the machine learning 
method or model.

Further, this gives us a measure of the quality of the 
ultimately chosen model.

Model Assessment



Test Error

The average error that results from using a machine learning 
method to predict the response on a new observation. 

The prediction error over an independent test sample.

Training Error

The average loss over the training sample:

Note: The training error rate can dramatically underestimate the test 
error rate

Model Assessment (cont.)



Model Assessment (cont.)

▪ As the model becomes more and more 
complex, it uses the training data more and is 
able to adapt to more complicated 
underlying structures.

▪ Hence, there is a decrease in bias but an 
increase in variance.

▪ However, training error is not a good 
estimate of the test error.

• Training error consistently decreases with model complexity.

• A model with zero training error is overfit to the training data and will typically 

generalize poorly.



Model Assessment (cont.)

▪ If we are in a data-rich situation, the best approach for both model selection and 
model assessment is to randomly divide the dataset into three parts: training set, 
validation set, and test set.

▪ The training set is used to fit the models. The validation set is used to estimate 
prediction error for model selection. The test set is used for assessment of the 
prediction error of the final chosen model.

▪ A typical split might by 50% for training, and 25% each for validation and testing.



By far, the most important use of validation is for model selection, which we will 
discuss in greater detail next week. 

This could be the choice between a linear model and a nonlinear model, the choice 
of the order of polynomial in a model, the choice of a regularization parameter, 
or any other choice that affects the learning process.

In almost every learning situation, there are some choices to be made and we 
need a principled way of making these choices.

The leap is to realize that validation can be used to estimate the out-of-sample 
error for more than one model.

Overview: Model Selection



Suppose we have M models; validation can be 
used to select one of these models.

We use the training data to fit the model, and we 
evaluate each model on the validation set to 
obtain the validation errors.

It is now a simple matter to select the model with 
the lowest validation error.

Overview: Model Selection (cont.)



Suppose that we would like to find a set of variables that give the lowest 
validation error rate (an estimate of the test error rate).

If we have a large data set, we can achieve this goal by randomly splitting the 
data into separate training and validation data sets.

Then, we use the training data set to build each possible model and select the 
model that gives the lowest error rate when applied to the validation data 
set.

Validation Set Approach

Training Data Validation Data



Example: we want to predict mpg from horsepower 

Two models:
mpg ~ horsepower

mpg ~ horsepower + horspower2

Which model gives a better fit?
We randomly split (50/50) 392 observations into training and validation 

data sets, and we fit both models using the training data.

Next, we evaluate both models using the validation data set.

Winner = model with the lowest validation (testing) MSE

Validation Set Approach: Example



Left Panel: Validation error estimates for a single split into training and 
validation data sets.

Right Panel: Validation error estimates for multiple splits; shows the test 
error rate is highly variable.

Validation Set Approach: Example Results



Advantages: 

Conceptually simple and easy implementation.

Drawbacks:

The validation set error rate (MSE) can be highly variable.

Only a subset of the observations (those in the training set) are used 
to fit the model.

Machine learning methods tend to perform worse when trained on 
fewer observations.

Thus, the validation set error rate may tend to overestimate the test 
error rate for the model fit on the entire data set.

Validation Set Approach: Review



Instead of creating two subsets of comparable size, a single 
observation is used for the validation set and the remaining 
observations (n – 1) make up the training set.

Leave-One-Out Cross-Validation

▪ LOOCV Algorithm:
– Split the entire data set of size n into:

• Blue = training data set

• Beige = validation data set

– Fit the model using the training data set

– Evaluate the model using validation set and 
compute the corresponding MSE.

– Repeat this process n times, producing n
squared errors. The average of these n 
squared errors estimates the test MSE.

CV(𝑛) =
1

𝑛
෍

𝑖=1

𝑛

MSE𝑖



LOOCV has far less bias and, therefore, tends not to overestimate 
the test error rate.

Performing LOOCV multiple times always yields the same results 
because there is no randomness in the training/validation set 
splits.

LOOCV is computationally intensive because the model has to be fit 
n times. However, there is a shortcut with OLS linear or 
polynomial regression (where hi is the leverage):

Validation Set Approach vs. LOOCV

CV(𝑛) =
1

𝑛
෍

𝑖=1

𝑛
𝑌𝑖 − ෠𝑌𝑖
1 − ℎ𝑖

2



Probably the simplest and most widely used method for estimating 
prediction error.

This method directly estimates the average prediction error when the 
machine learning method is applied to an independent test sample.

Ideally, if we had enough data, we would set aside a validation set (as 
previously described) and use it to assess the performance of our 
prediction model.

To finesse the problem, K-fold cross-validation uses part of the available 
data to fit the model, and a different part to test it.

K-Fold Cross-Validation



We use this method because LOOCV is 
computationally intensive.

We randomly divide the data set of into K
folds (typically K = 5 or 10).

K-Fold Cross-Validation (cont.)

▪ The first fold is treated as a validation set, and the method is fit on 
the remaining K – 1 folds. The MSE is computed on the 
observations in the held-out fold. The process is repeated K times, 
taking out a different part each time.

▪ By averaging the K estimates of the test error, we get an estimated 
validation (test) error rate for new observations.



K-Fold Cross-Validation (cont.)

Let the K folds be C1, … , CK, where Ck denotes the indices of the 
observations in fold k. There are nk observations in fold k: if N is a 
multiple of K, then nk = n / K.

Compute: CV(𝐾) = σ𝑘=1
𝐾 𝑛𝑘

𝑛
MSE𝑘

where MSE𝑘 =
1

𝑛𝑘
σ𝑖∈𝐶𝑘

(𝑌𝑖 − ෠𝑌𝑖)
2 and ෠𝑌𝑖 is the fitted value for 

observation i, obtained from the data with fold k removed.



Left Panel: LOOCV Error Curve

Right Panel: 10-fold CV run nine separate times, each with a different 
random split of the data into ten parts.

Note: LOOCV is a special case of K-fold, where K = n

K-Fold Cross-Validation vs. LOOCV



Which is better, LOOCV or K-fold CV?
LOOCV is more computationally intensive than K-fold CV

From the perspective of bias reduction, LOOCV is preferred to K-fold CV (when K 
< n)

However, LOOCV has higher variance than K-fold CV (when K < n)

Thus, we see the bias-variance trade-off between the two resampling methods

We tend to use K-fold CV with K = 5 or K = 10, as these values have 
been shown empirically to yield test error rate estimates that suffer 
neither from excessively high bias nor from very high variance

Bias-Variance Trade-off for K-Fold Cross-
Validation



We will cover classification problems in more detail later in the course, but 
we briefly show how CV can be used when Y is qualitative (categorical) as 
opposed to quantitative. Here, rather than use MSE to quantify test error, 
we instead use the number of misclassified observation.

LOOCV Error Rate: CV(𝑛) =
1

𝑛
σ𝑖=1
𝑛 E𝑟𝑟𝑖 , where E𝑟𝑟𝑖 = 𝐼(𝑌𝑖 ≠ ෠𝑌𝑖)

We use CV as follows: 

Divide data into K folds; hold-out one part and fit using the remaining data 
(compute error rate on hold-out data); repeat K times.

CV Error Rate: average over the K errors we have computed

Cross-Validation on Classification Problems



ROC



Which Model should you use?

False Positive 
Rate

False Negative 
Rate

Model 1 41% 3%

Model 2 5% 25%

Mistakes have different costs:

• Disease Screening – LOW FN Rate

• Spam filtering        – LOW FP Rate

Conservative vs Aggressive settings:

• The same application might need multiple tradeoffs

Actually the same model

- different thresholds



Classifications and Probability Estimates

Logistic regression produces a 
score between 0 – 1 (probability 
estimate)

Use threshold to produce 
classification

What happens if you vary the 
threshold?
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Example of Changing Thresholds

Score
Predictio

n
Y

.25 0

.45 0

.55 1

.67 0

.82 1

.95 1

Threshold = .5

False Positive Rate 33%

False Negative Rate 0%

Threshold = .6

False Positive Rate 33%

False Negative Rate 33%

Threshold = .7

False Positive Rate 0%

False Negative Rate 33%



ROC Curve
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(Receiver Operating Characteristic)

Sweep threshold from 0 to 1

• Threshold 0: ‘all’ classified as 1

• Threshold 1: ‘all’ classified as 0

Percent of 1s classified as 0

Percent of 0s classified 

as 1Perfect score:

• 0% of 1s called 0

• 0% of 0s called 1

This model’s distance 

from perfect



Operating Points
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Threshold .05
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1) Target FP 

Rate

Interpolate between nearest measurements:

- To achieve 30% FPR, use threshold of ~0.045

2) Target FN 

Rate

3) Explicit 

cost: 

• FP costs 10

• FN costs 1

Threshold: 0.8

- 5FPs + 60FNs → 110 

cost

Threshold: 0.83

- 4FPs + 65FNs → 105 

cost

Threshold: 0.87

- 3FPs + 90FNs → 120 

cost



Pattern for using operating 
points
# Train model and tune parameters on training and validation data

# Evaluate model on extra holdout data, reserved for threshold setting
( xThreshold, yThreshold ) = ReservedData()

# Find threshold that achieves operating point on this extra holdout data
potentialThresholds = {}

for t in range [ 1% - 100%]:

potentialThresholds[t] = FindFPRate(model.Predict(xThreshold, t), yThreshold)

bestThreshold = FindClosestThreshold(<targetFPRate>, potentialThresholds) # or 

interpolate

# Evaluate on validation data with selected threshold to estimate generalization performance
performanceAtOperatingPoint = FindFNRate(model.Predict(xValidate, 

bestThreshold), yValidate)

# make sure nothing went crazy…
if FindFPRate(model.Predict(xValidate, bestThreshold), yValidate) <far from> 

potentialThresholds[bestThreshold]:

# Problem?

Slight changes lead to drift:

• Today         - threshold .9 -> 60% FNR

• Tomorrow - threshold .9 -> 62% FNR

Might update thresholds more than model



Comparing Models with ROC Curves
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Model 1 Model 2

Model 1: AUC ~97

Area Under Curve (AUC)
Integrate Area under the curve

Perfect score is 1

Higher scores allow for generally 
better tradeoffs

AUC of 0.5 indicates model is 
essentially randomly guessing

AUC of < 0.5 indicates you’re doing 
something wrong…

Model 1 better than Model 2 at this 

FPR

Model 1 better than

Model 2 at this 

FNR

Model 1 better than Model 2 at every FPR or FNR 

target

Model 2: AUC ~89.5



MORE REGRESSION



The Bias-Variance Decomposition (1)

Recall the expected squared loss,

where

The second term of E[L] corresponds to the noise 
inherent in the random variable t.

What about the first term?



The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of 
size N. Any particular data set, D, will give a 
particular function y(x;D). We then have



The Bias-Variance Decomposition (3)

Taking the expectation over D yields



The Bias-Variance Decomposition (4)

Thus we can write

where 



The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸.



The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸.



The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying 
the degree of regularization, ¸.



The Bias-Variance Trade-off

From these plots, we note 
that an over-regularized 
model (large ¸) will have a 
high  bias, while an under-
regularized model (small ¸) 
will have a high variance.



Bayesian Linear Regression (1)

Prob. Model:

Define a conjugate prior over w

Combining this with the likelihood function and using  
results for marginal and conditional Gaussian 
distributions, gives the posterior 

where 



Bayesian Linear Regression (2)

A common choice for the prior is 

for which

Next we consider an example …



Bayesian Linear Regression (3)

0 data points observed

Prior Data Space



Bayesian Linear Regression (4)

1 data point observed

Likelihood Posterior Data Space



Bayesian Linear Regression (5)

2 data points observed

Likelihood Posterior Data Space



Bayesian Linear Regression (6)

20 data points observed

Likelihood Posterior Data Space



Predictive Distribution (1)

Predict t for new values of x by integrating 
over w:

where



Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions, 
1 data point



Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions, 
2 data points



Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions, 
4 data points



Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions, 
25 data points



Automatically determining regularization

• Introduce and un-informative prior over 
hyperparameters:

• Gamma distribution:


