
Foundations of Data Science

Sourangshu Bhattacharya
IIT Kharagpur

http://cse.iitkgp.ac.in/~sourangshu/

Some slides are taken from Christopher Bishop and Geoffrey
Hinton’s courses

OVERVIEW

What is Machine Learning?

It is very hard to write programs that solve problems like recognizing
a face.
We don’t know what program to write because we don’t know

how our brain does it.
Even if we had a good idea about how to do it, the program

might be horrendously complicated.
Instead of writing a program by hand, we collect lots of examples

that specify the correct output for a given input.
A machine learning algorithm then takes these examples and

produces a program that does the job.
The program produced by the learning algorithm may look very

different from a typical hand-written program. It may contain
millions of numbers.

If we do it right, the program works for new cases as well as the
ones we trained it on.

A classic example of a task that requires machine

learning: It is very hard to say what makes a 2

Some more examples of tasks that are best
solved by using a learning algorithm

Recognizing patterns:

Facial identities or facial expressions

Handwritten or spoken words

Medical images

Generating patterns:

Generating images or motion sequences

Recognizing anomalies:

Unusual sequences of credit card transactions

Unusual patterns of sensor readings in a nuclear power plant
or unusual sound in your car engine.

Prediction:

Future stock prices or currency exchange rates

Some web-based examples of machine learning

The web contains a lot of data. Tasks with very big datasets often
use machine learning

especially if the data is noisy or non-stationary.

Spam filtering, fraud detection:

The enemy adapts so we must adapt too.

Recommendation systems:

Lots of noisy data. Million dollar prize!

Information retrieval:

Find documents or images with similar content.

Data Visualization:

Display a huge database in a revealing way

REGRESSION

Linear Basis Function Models (1)

Example: Polynomial Curve Fitting

Linear Basis Function Models (2)

Generally

where Áj(x) are known as basis functions.

Typically, Á0(x) = 1, so that w0 acts as a bias.

In the simplest case, we use linear basis
functions : Ád(x) = xd.

Linear Basis Function Models (3)

Polynomial basis functions:

These are global; a small
change in x affect all basis
functions.

Linear Basis Function Models (4)

Gaussian basis functions:

These are local; a small change
in x only affect nearby basis
functions. ¹j and s control
location and scale (width).

Linear Basis Function Models (5)

Sigmoidal basis functions:

where

Also these are local; a small
change in x only affect nearby
basis functions. ¹j and s
control location and scale
(slope).

Least Squares Estimation

Maximum Likelihood and Least Squares (1)

Assume observations from a deterministic function
with added Gaussian noise:

which is the same as saying,

Given observed inputs, , and targets,
, we obtain the likelihood function

where

Maximum Likelihood and Least Squares (2)

Taking the logarithm, we get

where

is the sum-of-squares error.

Computing the gradient and setting it to zero yields

Solving for w, we get

where

Maximum Likelihood and Least Squares (3)

The Moore-Penrose
pseudo-inverse, .

Geometry of Least Squares

Consider

S is spanned by .

wML minimizes the distance
between t and its orthogonal
projection on S, i.e. y.

N-dimensional
M-dimensional

Normal Equations

If is invertible,

When is invertible ?
Recall: Full rank matrices are invertible.

What if is not invertible ?

p xp p x1 p x1

Gradient Descent

1
4

Even when is invertible, might be computationally expensive if A is huge.

Treat as optimization problem

Observation: J(β) is convex in β.

J(β1)

β1
β1

β2

How to find the minimizer?

J(β1, β2)

Gradient Descent

Even when is invertible, might be computationally expensive if A is huge.

Initialize:

Update:

0 if =

Stop: when some criterion met e.g. fixed # iterations, or < ε.

Since J() is convex, move along negative of gradient

step size

Effect of step-‐size α

Large α => Fast convergence but larger residual error
Also possible oscillations

Small α => Slow convergence but small residual error

0th Order

Polynomial

n=10

1st Order

Polynomial

Slide courtesy of William Cohen

3rd Order

Polynomial

Slide courtesy of William Cohen

9th Order

Polynomial

Slide courtesy of William Cohen

Over-fitting

Root-Mean-Square (RMS) Error

Slide courtesy of William Cohen

Polynomial Coefficients

Slide courtesy of William Cohen

Regularization

Penalize large coefficient values

Slide courtesy of William Cohen

Regularization:

Slide courtesy of William Cohen

Over Regularization

Slide courtesy of William Cohen

Regularization

Regularized Least Squares (1)

Consider the error function:

With the sum-of-squares error function and a
quadratic regularizer, we get

which is minimized by

Data term + Regularization term

¸ is called the
regularization
coefficient.

Regularized Least Squares (2)

With a more general regularizer, we have

Lasso Quadratic

Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a
quadratic
regularizer.

CLASSIFICATION

Discrete and Continuous Labels

Sports
Science
News

Classification

Regression

Anemic cell
Healthy cell

Stock Market
Prediction

Y = ?

X = Feb01

X = Document Y = Topic X = Cell Image Y = Diagnosis

An example application

An emergency room in a hospital measures 17
variables (e.g., blood pressure, age, etc) of newly
admitted patients.

A decision is needed: whether to put a new patient in
an intensive-care unit.

Due to the high cost of ICU, those patients who may
survive less than a month are given higher priority.

Problem: to predict high-risk patients and discriminate
them from low-risk patients.

Another application

A credit card company receives thousands of
applications for new cards. Each application
contains information about an applicant,
age

Marital status

annual salary

outstanding debts

credit rating

etc.

Problem: to decide whether an application should
approved, or to classify applications into two
categories, approved and not approved.

Data: A set of data records (also called
examples, instances or cases) described
by

k attributes: A1, A2, … Ak.

a class: Each example is labelled with a pre-
defined class.

Goal: To learn a classification model from
the data that can be used to predict the
classes of new (future, or test)
cases/instances.

The data and the goal

Supervised learning process: two steps

◼ Learning (training): Learn a model using the

training data

◼ Testing: Test the model using unseen test data

to assess the model accuracy

,
cases test ofnumber Total

tionsclassificacorrect ofNumber
=Accuracy

Least squares classification

Least squares classification

Least squares classification

From Linear to Logistic Regression

Assumes the following functional form for P(Y|X):

Logistic function applied to a linear
function of the data

Logistic function
(or Sigmoid):

z

lo
gi

t
(z

)

Features can be discrete or continuous!

Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y|X):

Decision boundary:

1

1

(Linear Decision Boundary)

Logistic Regression is a Linear Classifier!

Assumes the following functional form for P(Y|X):

1

1

Logistic Regression

Logistic Regression

w*= argmaxw L(w)

Logistic Regression

Logistic Regression

Properties of Error function

Gradient Descent

Problem: min f(x)
f(x): differentiable
g(x): gradient of f(x)
Negative gradient is

steepest descent
direction.

At each step move in
the gradient direction
so that there is
“sufficient decrease”.

Gradient Descent

SUPPORT VECTOR MACHINES

Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you

classify this data?

Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you

classify this data?

Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you

classify this data?

Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

How would you

classify this data?

Linear Classifiers
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

Any of these would

be fine..

..but which is best?

Classifier Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

Define the margin

of a linear

classifier as the

width that the

boundary could be

increased by

before hitting a

datapoint.

Maximum Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum

margin linear

classifier is the

linear classifier

with the, um,

maximum margin.

This is the

simplest kind of

SVM (Called an

LSVM)

Linear SVM

Maximum Margin
f x

a

yest

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum

margin linear

classifier is the

linear classifier

with the, um,

maximum margin.

This is the

simplest kind of

SVM (Called an

LSVM)

Support Vectors

are those

datapoints that the

margin pushes up

against

Linear SVM

Why Maximum Margin?

denotes +1

denotes -1

f(x,w,b) = sign(w. x - b)

The maximum

margin linear

classifier is the

linear classifier

with the, um,

maximum margin.

This is the

simplest kind of

SVM (Called an

LSVM)

Support Vectors

are those

datapoints that the

margin pushes up

against

1. Intuitively this feels safest.

2. If we’ve made a small error in the
location of the boundary (it’s been
jolted in its perpendicular direction)
this gives us least chance of causing a
misclassification.

3. LOOCV is easy since the model is
immune to removal of any non-
support-vector datapoints.

4. There’s some theory (using VC
dimension) that is related to (but not
the same as) the proposition that this
is a good thing.

5. Empirically it works very very well.

Specifying a line and margin

How do we represent this mathematically?

…in m input dimensions?

Plus-Plane

Minus-Plane

Classifier Boundary

Specifying a line and margin

Plus-plane = { x : w . x + b = +1 }

Minus-plane = { x : w . x + b = -1 }

Plus-Plane

Minus-Plane

Classifier Boundary

Classify as.. +1 if w . x + b >= 1

-1 if w . x + b <= -1

Universe
explodes

if -1 < w . x + b < 1

Support vector machines

Let {x1, ..., xn} be our data set and let yi  {1,-1} be the class label
of xi

75

Class 1

Class 2

m

y=1
y=1

y=1

y=1

y=1

y=-1

y=-1

y=-1

y=-1

y=-1

y=-1

1 + bxw i

T
For yi=1

1 −+bxw i

T
For yi=-1

() ()iii

T

i yxbxwy ,,1 +
So:

Large-margin Decision Boundary
The decision boundary should be as far away

from the data of both classes as possible

We should maximize the margin, m

76

Class 1

Class 2

m

Finding the Decision Boundary

The decision boundary should classify all points correctly 

The decision boundary can be found by solving the
following constrained optimization problem

This is a constrained optimization problem. Solving it
requires to use Lagrange multipliers

77

KKT Conditions

Problem:
min
𝑥

𝑓(𝑥) sub. to: gi x ≤ 0 ∀ 𝑖

Lagrangian: 𝐿 𝑥, 𝜇 = 𝑓 𝑥 + σ𝑖 𝜇𝑖𝑔𝑖(𝑥)

Conditions:

Stationarity: 𝛻xL x, 𝜇 = 0.

Primal feasibility: 𝑔𝑖 𝑥 ≤ 0 ∀ 𝑖.

Dual feasibility: 𝜇𝑖 ≥ 0.

Complementary slackness: 𝜇𝑖𝑔𝑖 𝑥 = 0.

The Lagrangian is

ai≥0

Note that ||w||2 = wTw

79

Finding the Decision Boundary

Setting the gradient of L w.r.t. w and b to zero,
we have

80











=




=




0

,0

b

L

k
w

L
k

()()

 



= ==

=



















+−+=

=+−+=

n

i

m

k

k

i

k

ii

m

k

kk

n

i

i

T

ii

T

bxwyww

bxwywwL

1 11

1

1
2

1

1
2

1

a

a

n: no of examples, m: dimension of the space

The Dual Problem

The Dual Problem

If we substitute to , we have

Since

This is a function of ai only

81

The Dual Problem
The new objective function is in terms of ai only

It is known as the dual problem: if we know w, we know all ai; if we know all
ai, we know w

The original problem is known as the primal problem

The objective function of the dual problem needs to be maximized (comes
out from the KKT theory)

The dual problem is therefore:

82

Properties of ai when we introduce
the Lagrange multipliers

The result when we differentiate the
original Lagrangian w.r.t. b

The Dual Problem

This is a quadratic programming (QP) problem

A global maximum of ai can always be found

w can be recovered by

83

Characteristics of the Solution

Many of the ai are zero

Complementary slackness: 𝛼𝑖 1 − 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 = 0

Sparse representation: w is a linear combination of a small
number of data points

xi with non-zero ai are called support vectors (SV)

The decision boundary is determined only by the SV

Let tj (j=1, ..., s) be the indices of the s support vectors. We
can write

84

A Geometrical Interpretation

85

a6=1.4

Class 1

Class 2

a1=0.8

a2=0

a3=0

a4=0

a5=0

a7=0

a8=0.6

a9=0

a10=0

Characteristics of the Solution

For testing with a new data z

Compute and

classify z as class 1 if the sum is positive, and

class 2 otherwise

Note: w need not be formed explicitly

86

Non-linearly Separable Problems

We allow “error” xi in classification; it is based on the output of
the discriminant function wTx + b

xi approximates the number of misclassified samples

87

Class 1

Class 2

Soft Margin Hyperplane

The new conditions become

xi are “slack variables” in optimization
Note that xi=0 if there is no error for xi

xi is an upper bound of the number of errors

We want to minimize

C : tradeoff parameter between error and margin

88


=

+
n

i

iCw
1

2

2

1
x

The Optimization Problem

89

()() 
===

−+−−++=
n

i

ii

n

i

i

T

iii

n

i

i

T bxwyCwwL
111

1
2

1
xxax

0
1

=−=





=

n

i

ijiij

j

xyw
w

L
a 0

1

== 
=

n

i

iii xyw


a

0=−−=



jj

j

C
L

a
x

0
1

==





=

n

i

iiy
b

L
a

With α and μ Lagrange multipliers, POSITIVE

The Dual Problem


== =

+−=
n

i

ij

T

iji

n

i

n

j

ji xxyyL
11 12

1
aaa



 



== =

== =

−



























+−−+

++=

n

i

ii

n

i

n

j

i

T

jjjiii

n

i

ij

T

iji

n

i

n

j

ji

bxxyy

CxxyyL

11 1

11 1

1

2

1

xaxa

xaa


jjC a +=0
1

=
=

n

i

iiy aWith and

The Optimization Problem

The dual of this new constrained optimization problem is

New constraints derived from since μ and α are
positive.

w is recovered as

This is very similar to the optimization problem in the linear
separable case, except that there is an upper bound C on ai now

Once again, a QP solver can be used to find ai

91

jjC a +=

The algorithm try to keep ξ low, while maximizing the margin

The algorithm does not minimize the number of error. Instead,

it minimizes the sum of distances from the hyperplane.

When C increases the number of errors tend to lower. At the
limit of C tending to infinite, the solution tend to that given
by the hard margin formulation, with 0 errors

6/28/2022 92


=

+
n

i

iCw
1

2

2

1
x

Soft margin is more robust to outliers

93

KERNEL METHODS

Extension to Non-linear Decision Boundary

So far, we have only considered large-margin classifier with
a linear decision boundary

How to generalize it to become nonlinear?
Key idea: transform xi to a higher dimensional space to

“make life easier”
Input space: the space the point xi are located
Feature space: the space of f(xi) after transformation

Why transform?
Linear operation in the feature space is equivalent to non-linear

operation in input space
Classification can become easier with a proper transformation.

In the XOR problem, for example, adding a new feature of
x1x2 make the problem linearly separable

95

XOR
X Y

0 0 0

0 1 1

1 0 1

1 1 0

96

Is not linearly separable

X Y XY

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Is linearly separable

Find a feature space

97

Transforming the Data

Computation in the feature space can be costly
because it is high dimensional
The feature space is typically infinite-dimensional!

The kernel trick comes to rescue

98

f()

f()

f()
f()f()

f()

f()
f()

f(.)
f()

f()

f()

f()
f()

f()

f()

f()
f()

f()

Feature spaceInput space
Note: feature space is of higher dimension

than the input space in practice

The Kernel Trick
Recall the SVM optimization problem

The data points only appear as inner product

As long as we can calculate the inner product in the feature
space, we do not need the mapping explicitly

Many common geometric operations (angles, distances) can
be expressed by inner products

Define the kernel function as

99

An Example for f(.) and K(.,.)

Suppose f(.) is given as follows

An inner product in the feature space is

So, if we define the kernel function as follows, there is no
need to carry out f(.) explicitly

This use of kernel function to avoid carrying out f(.)
explicitly is known as the kernel trick

100

Kernels

Given a mapping:

a kernel is represented as the inner product

A kernel must satisfy the Mercer’s condition:

101

φ(x)x →

→
i

ii φφK (y)(x)yx),(

  0)()()()(yxyxyx,x ddggKg

Modification Due to Kernel Function

Change all inner products to kernel functions

For training,

102

Original

With kernel
function

Modification Due to Kernel Function

For testing, the new data z is classified as class 1
if f  0, and as class 2 if f <0

103

Original

With kernel
function

More on Kernel Functions

Since the training of SVM only requires the value of
K(xi, xj), there is no restriction of the form of xi and xj

xi can be a sequence or a tree, instead of a feature vector

K(xi, xj) is just a similarity measure comparing xi and xj

For a test object z, the discriminant function essentially
is a weighted sum of the similarity between z and a
pre-selected set of objects (the support vectors)

104

Kernel Functions

In practical use of SVM, the user specifies the kernel
function; the transformation f(.) is not explicitly
stated

Given a kernel function K(xi, xj), the transformation f(.)
is given by its eigenfunctions (a concept in functional
analysis)
Eigenfunctions can be difficult to construct explicitly

This is why people only specify the kernel function without
worrying about the exact transformation

Another view: kernel function, being an inner product,
is really a similarity measure between the objects

105

A kernel is associated to a transformation

Given a kernel, in principle it should be recovered the
transformation in the feature space that originates
it.

K(x,y) = (xy+1)2= x2y2+2xy+1

It corresponds the transformation

106

















→

1

2

2

x

x

x

Examples of Kernel Functions

Polynomial kernel of degree d

Polynomial kernel up to degree d

Radial basis function kernel with width s

The feature space is infinite-dimensional

Sigmoid with parameter k and q

It does not satisfy the Mercer condition on all k and q

107

Building new kernels
If k1(x,y) and k2(x,y) are two valid kernels then the following

kernels are valid

Linear Combination

Exponential

Product

Polynomial transformation (Q: polynomial with non negative
coeffcients)

Function product (f: any function)
108

),(),(),(2211 yxkcyxkcyxk +=

 ),(exp),(1 yxkyxk =

),(),(),(21 yxkyxkyxk =

 ),(),(1 yxkQyxk =

)(),()(),(1 yfyxkxfyxk =

Polynomial kernel

Ben-Hur et al, PLOS computational Biology 4 (2008)
109

Gaussian RBF kernel

Ben-Hur et al, PLOS computational Biology 4 (2008)
110

CROSSVALIDATION

Involves repeatedly drawing samples from a training set and refitting
a model of interest on each sample in order to obtain more
information about the fitted model.

Example: We can estimate the variability of a linear regression fit by
repeatedly drawing different samples from the training data,
fitting a OLS regression to each new sample, and then examining
the extent to which the resulting fits differ.

Model Assessment: having chosen a final model, estimating its
prediction error on new data.

Model Selection: estimating the performance of different models in
order to choose the best one.

Resampling Methods

Cross-Validation

Used to estimate test set prediction error rates
associated with a given machine learning method to
evaluate its performance, or to select the appropriate
level of model flexibility.

Bootstrap

Used most commonly to provide a measure of accuracy
of a parameter estimate or of a given machine learning
method.

Resampling Methods

The generalization performance of a machine learning
method relates to its prediction capability on independent
test sets.

Assessment of this performance is extremely important in
practice, since it guides the choice of the machine learning
method or model.

Further, this gives us a measure of the quality of the
ultimately chosen model.

Model Assessment

Test Error

The average error that results from using a machine learning
method to predict the response on a new observation.

The prediction error over an independent test sample.

Training Error

The average loss over the training sample:

Note: The training error rate can dramatically underestimate the test
error rate

Model Assessment (cont.)

Model Assessment (cont.)

▪ As the model becomes more and more
complex, it uses the training data more and is
able to adapt to more complicated
underlying structures.

▪ Hence, there is a decrease in bias but an
increase in variance.

▪ However, training error is not a good
estimate of the test error.

• Training error consistently decreases with model complexity.

• A model with zero training error is overfit to the training data and will typically

generalize poorly.

Model Assessment (cont.)

▪ If we are in a data-rich situation, the best approach for both model selection and
model assessment is to randomly divide the dataset into three parts: training set,
validation set, and test set.

▪ The training set is used to fit the models. The validation set is used to estimate
prediction error for model selection. The test set is used for assessment of the
prediction error of the final chosen model.

▪ A typical split might by 50% for training, and 25% each for validation and testing.

By far, the most important use of validation is for model selection, which we will
discuss in greater detail next week.

This could be the choice between a linear model and a nonlinear model, the choice
of the order of polynomial in a model, the choice of a regularization parameter,
or any other choice that affects the learning process.

In almost every learning situation, there are some choices to be made and we
need a principled way of making these choices.

The leap is to realize that validation can be used to estimate the out-of-sample
error for more than one model.

Overview: Model Selection

Suppose we have M models; validation can be
used to select one of these models.

We use the training data to fit the model, and we
evaluate each model on the validation set to
obtain the validation errors.

It is now a simple matter to select the model with
the lowest validation error.

Overview: Model Selection (cont.)

Suppose that we would like to find a set of variables that give the lowest
validation error rate (an estimate of the test error rate).

If we have a large data set, we can achieve this goal by randomly splitting the
data into separate training and validation data sets.

Then, we use the training data set to build each possible model and select the
model that gives the lowest error rate when applied to the validation data
set.

Validation Set Approach

Training Data Validation Data

Example: we want to predict mpg from horsepower

Two models:
mpg ~ horsepower

mpg ~ horsepower + horspower2

Which model gives a better fit?
We randomly split (50/50) 392 observations into training and validation

data sets, and we fit both models using the training data.

Next, we evaluate both models using the validation data set.

Winner = model with the lowest validation (testing) MSE

Validation Set Approach: Example

Left Panel: Validation error estimates for a single split into training and
validation data sets.

Right Panel: Validation error estimates for multiple splits; shows the test
error rate is highly variable.

Validation Set Approach: Example Results

Advantages:

Conceptually simple and easy implementation.

Drawbacks:

The validation set error rate (MSE) can be highly variable.

Only a subset of the observations (those in the training set) are used
to fit the model.

Machine learning methods tend to perform worse when trained on
fewer observations.

Thus, the validation set error rate may tend to overestimate the test
error rate for the model fit on the entire data set.

Validation Set Approach: Review

Instead of creating two subsets of comparable size, a single
observation is used for the validation set and the remaining
observations (n – 1) make up the training set.

Leave-One-Out Cross-Validation

▪ LOOCV Algorithm:
– Split the entire data set of size n into:

• Blue = training data set

• Beige = validation data set

– Fit the model using the training data set

– Evaluate the model using validation set and
compute the corresponding MSE.

– Repeat this process n times, producing n
squared errors. The average of these n
squared errors estimates the test MSE.

CV(𝑛) =
1

𝑛
෍

𝑖=1

𝑛

MSE𝑖

LOOCV has far less bias and, therefore, tends not to overestimate
the test error rate.

Performing LOOCV multiple times always yields the same results
because there is no randomness in the training/validation set
splits.

LOOCV is computationally intensive because the model has to be fit
n times. However, there is a shortcut with OLS linear or
polynomial regression (where hi is the leverage):

Validation Set Approach vs. LOOCV

CV(𝑛) =
1

𝑛
෍

𝑖=1

𝑛
𝑌𝑖 − ෠𝑌𝑖
1 − ℎ𝑖

2

Probably the simplest and most widely used method for estimating
prediction error.

This method directly estimates the average prediction error when the
machine learning method is applied to an independent test sample.

Ideally, if we had enough data, we would set aside a validation set (as
previously described) and use it to assess the performance of our
prediction model.

To finesse the problem, K-fold cross-validation uses part of the available
data to fit the model, and a different part to test it.

K-Fold Cross-Validation

We use this method because LOOCV is
computationally intensive.

We randomly divide the data set of into K
folds (typically K = 5 or 10).

K-Fold Cross-Validation (cont.)

▪ The first fold is treated as a validation set, and the method is fit on
the remaining K – 1 folds. The MSE is computed on the
observations in the held-out fold. The process is repeated K times,
taking out a different part each time.

▪ By averaging the K estimates of the test error, we get an estimated
validation (test) error rate for new observations.

K-Fold Cross-Validation (cont.)

Let the K folds be C1, … , CK, where Ck denotes the indices of the
observations in fold k. There are nk observations in fold k: if N is a
multiple of K, then nk = n / K.

Compute: CV(𝐾) = σ𝑘=1
𝐾 𝑛𝑘

𝑛
MSE𝑘

where MSE𝑘 =
1

𝑛𝑘
σ𝑖∈𝐶𝑘

(𝑌𝑖 − ෠𝑌𝑖)
2 and ෠𝑌𝑖 is the fitted value for

observation i, obtained from the data with fold k removed.

Left Panel: LOOCV Error Curve

Right Panel: 10-fold CV run nine separate times, each with a different
random split of the data into ten parts.

Note: LOOCV is a special case of K-fold, where K = n

K-Fold Cross-Validation vs. LOOCV

Which is better, LOOCV or K-fold CV?
LOOCV is more computationally intensive than K-fold CV

From the perspective of bias reduction, LOOCV is preferred to K-fold CV (when K
< n)

However, LOOCV has higher variance than K-fold CV (when K < n)

Thus, we see the bias-variance trade-off between the two resampling methods

We tend to use K-fold CV with K = 5 or K = 10, as these values have
been shown empirically to yield test error rate estimates that suffer
neither from excessively high bias nor from very high variance

Bias-Variance Trade-off for K-Fold Cross-
Validation

We will cover classification problems in more detail later in the course, but
we briefly show how CV can be used when Y is qualitative (categorical) as
opposed to quantitative. Here, rather than use MSE to quantify test error,
we instead use the number of misclassified observation.

LOOCV Error Rate: CV(𝑛) =
1

𝑛
σ𝑖=1
𝑛 E𝑟𝑟𝑖 , where E𝑟𝑟𝑖 = 𝐼(𝑌𝑖 ≠ ෠𝑌𝑖)

We use CV as follows:

Divide data into K folds; hold-out one part and fit using the remaining data
(compute error rate on hold-out data); repeat K times.

CV Error Rate: average over the K errors we have computed

Cross-Validation on Classification Problems

ROC

Which Model should you use?

False Positive
Rate

False Negative
Rate

Model 1 41% 3%

Model 2 5% 25%

Mistakes have different costs:

• Disease Screening – LOW FN Rate

• Spam filtering – LOW FP Rate

Conservative vs Aggressive settings:

• The same application might need multiple tradeoffs

Actually the same model

- different thresholds

Classifications and Probability Estimates

Logistic regression produces a
score between 0 – 1 (probability
estimate)

Use threshold to produce
classification

What happens if you vary the
threshold?

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Example of Changing Thresholds

Score
Predictio

n
Y

.25 0

.45 0

.55 1

.67 0

.82 1

.95 1

Threshold = .5

False Positive Rate 33%

False Negative Rate 0%

Threshold = .6

False Positive Rate 33%

False Negative Rate 33%

Threshold = .7

False Positive Rate 0%

False Negative Rate 33%

ROC Curve

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fa
ls

e
N

eg
at

iv
e

R
at

e

False Positive Rate

(Receiver Operating Characteristic)

Sweep threshold from 0 to 1

• Threshold 0: ‘all’ classified as 1

• Threshold 1: ‘all’ classified as 0

Percent of 1s classified as 0

Percent of 0s classified

as 1Perfect score:

• 0% of 1s called 0

• 0% of 0s called 1

This model’s distance

from perfect

Operating Points

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fa
ls

e
N

eg
at

iv
e

R
at

e

False Positive Rate

Threshold .05

Threshold .04

Threshold .03

1) Target FP

Rate

Interpolate between nearest measurements:

- To achieve 30% FPR, use threshold of ~0.045

2) Target FN

Rate

3) Explicit

cost:

• FP costs 10

• FN costs 1

Threshold: 0.8

- 5FPs + 60FNs → 110

cost

Threshold: 0.83

- 4FPs + 65FNs → 105

cost

Threshold: 0.87

- 3FPs + 90FNs → 120

cost

Pattern for using operating
points
Train model and tune parameters on training and validation data

Evaluate model on extra holdout data, reserved for threshold setting
(xThreshold, yThreshold) = ReservedData()

Find threshold that achieves operating point on this extra holdout data
potentialThresholds = {}

for t in range [1% - 100%]:

potentialThresholds[t] = FindFPRate(model.Predict(xThreshold, t), yThreshold)

bestThreshold = FindClosestThreshold(<targetFPRate>, potentialThresholds) # or

interpolate

Evaluate on validation data with selected threshold to estimate generalization performance
performanceAtOperatingPoint = FindFNRate(model.Predict(xValidate,

bestThreshold), yValidate)

make sure nothing went crazy…
if FindFPRate(model.Predict(xValidate, bestThreshold), yValidate) <far from>

potentialThresholds[bestThreshold]:

Problem?

Slight changes lead to drift:

• Today - threshold .9 -> 60% FNR

• Tomorrow - threshold .9 -> 62% FNR

Might update thresholds more than model

Comparing Models with ROC Curves

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fa
ls

e
N

eg
at

iv
e

R
at

e

False Positive Rate

Model 1 Model 2

Model 1: AUC ~97

Area Under Curve (AUC)
Integrate Area under the curve

Perfect score is 1

Higher scores allow for generally
better tradeoffs

AUC of 0.5 indicates model is
essentially randomly guessing

AUC of < 0.5 indicates you’re doing
something wrong…

Model 1 better than Model 2 at this

FPR

Model 1 better than

Model 2 at this

FNR

Model 1 better than Model 2 at every FPR or FNR

target

Model 2: AUC ~89.5

MORE REGRESSION

The Bias-Variance Decomposition (1)

Recall the expected squared loss,

where

The second term of E[L] corresponds to the noise
inherent in the random variable t.

What about the first term?

The Bias-Variance Decomposition (2)

Suppose we were given multiple data sets, each of
size N. Any particular data set, D, will give a
particular function y(x;D). We then have

The Bias-Variance Decomposition (3)

Taking the expectation over D yields

The Bias-Variance Decomposition (4)

Thus we can write

where

The Bias-Variance Decomposition (5)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, ¸.

The Bias-Variance Decomposition (6)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, ¸.

The Bias-Variance Decomposition (7)

Example: 25 data sets from the sinusoidal, varying
the degree of regularization, ¸.

The Bias-Variance Trade-off

From these plots, we note
that an over-regularized
model (large ¸) will have a
high bias, while an under-
regularized model (small ¸)
will have a high variance.

Bayesian Linear Regression (1)

Prob. Model:

Define a conjugate prior over w

Combining this with the likelihood function and using
results for marginal and conditional Gaussian
distributions, gives the posterior

where

Bayesian Linear Regression (2)

A common choice for the prior is

for which

Next we consider an example …

Bayesian Linear Regression (3)

0 data points observed

Prior Data Space

Bayesian Linear Regression (4)

1 data point observed

Likelihood Posterior Data Space

Bayesian Linear Regression (5)

2 data points observed

Likelihood Posterior Data Space

Bayesian Linear Regression (6)

20 data points observed

Likelihood Posterior Data Space

Predictive Distribution (1)

Predict t for new values of x by integrating
over w:

where

Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions,
1 data point

Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions,
2 data points

Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions,
4 data points

Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions,
25 data points

Automatically determining regularization

• Introduce and un-informative prior over
hyperparameters:

• Gamma distribution:

